Skip to main content
Log in

Natural occurrence of Azospirillum brasilense in strawberry plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Azospirillum species are free-living nitrogen-fixing bacteria commonly found in soil and in association with roots of different plant species. For their capacity to stimulate growth they are known as plant growth-promoting bacteria (PGPB). In this work, we demonstrate the natural occurrence and colonization of different parts of strawberry plants by Azospirillum brasilense in the cropping area of Tucumán, Argentina. Although bacteria isolations were carried out from two strawberry cultivars, e.g., Camarosa and Pájaro, attempts were successful only with the cultivar Camarosa. Whereas different strains of Azospirillum were isolated from the root surface and inner tissues of roots and stolons of the cultivar Camarosa, we have not obtained Azospirillum isolates from the cultivar Pájaro. After microbiological and molecular characterization (ARDRA) we determined that the isolates belonged to the species A. brasilense. All isolates showed to have the capacity to fix nitrogen, to produce siderophores and indoles. Local isolates exhibited different yields of indoles production when growing in N-free NFb semisolid media supplemented or not with tryptophan (0.1 mg ml−1). This is the first report on the natural occurrence of A. brasilense in strawberry plants, especially colonizing inner tissues of stolons, as well as roots. The local isolates showed three important characteristics within the PGPB group: N2-fixation, siderophores, and indoles production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baca BE, Soto Urzúa L, Xochihua Corona YG , Cuervo García A (1994) Characterization of two aromatic amino acid aminotransferases and production of indoleacetic acid in Azospirillum strains. Soil Biol Biochem 26:57–63

    Article  CAS  Google Scholar 

  • Baldani VLD, Alvarez MA de B, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929

    Article  Google Scholar 

  • Bashan Y (1998). Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Can J Microbiol 44:168–174

    Article  CAS  Google Scholar 

  • Bahan Y, de-Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643

    Article  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1989) Wheat root tips as a vector for passive vertical transfer of Azospirillum Cd. J G Microbiol 135:2899–2908

    Article  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–264

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-González C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Brock A, Vanderleyden J (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bacterias diazotróficas de plantas não-leguminosas. Brasilia-DF: EMBRAPA-SPI

  • Ghai SK, Thomas GV (1989) Occurrence of Azospirillum spp. in coconut-based farming systems. Plant Soil 114:235–241

    Article  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  CAS  Google Scholar 

  • Grifoni A, Bazzicalupo M, Di Serio C, Fancelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett 127:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    Article  CAS  Google Scholar 

  • Martínez-Morales LJ, Soto-Urzúa L, Baca BE, Sánchez-Ahédo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  PubMed  CAS  Google Scholar 

  • Pacovsky RS (1990) Development and growth effects in the sorghum-Azospirillum association. J Appl Bacteriol 68:555–563

    Google Scholar 

  • Pedraza RO, Díaz Ricci JC (2000) Azospirillum amazonense: su presencia en el área canera de la provincia a Tucumán. Rev Argent Microbiol 32:199–201

    PubMed  CAS  Google Scholar 

  • Pedraza RO, Díaz Ricci JC (2003) Genetic stability of Azospirillum brasilense after passing through the root interior of sugarcane. Symbiosis 34:69–83

    Google Scholar 

  • Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21

    Article  PubMed  CAS  Google Scholar 

  • Pérez D, Mazzone L (2004) La actividad frutillera en la provincial de Tucumán y Argentina. EEAOC Publicación Especial N 26, pp 100

  • Potrich DP, Passaglia LMP, Schrank IS (2001) Partial characterization of nif genes from the bacterium Azospirillum amazonense. Braz J Med Biol Res 34:1105–1113

    PubMed  CAS  Google Scholar 

  • Radwan T El S El D, Mohamed ZK, Reis VM (2002) Production of indole-3-acetic acid by different strains of Azospirillum and Herbaspirillum spp. Symbiosis 32:39–54

    Google Scholar 

  • Reynders L, Vlassak K (1979) Conversion of tryptophan to indole acetic acid by Azospirillum sp. Soil Biol Biochem 11:547–548

    Article  CAS  Google Scholar 

  • Rodríguez H, Mendoza A, Cruz MA, Holguin G, Glick BR, Bashan Y (2006) Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. FEMS Microbiol Ecol 57:217–225

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. In: Ford N (ed) A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Karkhanis V, Desai A (1992) Isolation and characterization of siderophore, with antimocrobial activity, from Azospirillum lipoferum. M.Curr Microbiol 25:347–351

    Article  CAS  Google Scholar 

  • Subba Rao NS (1983) Nitrogen-fixing bacteria associated with plantation and orchard plants. Can J Microbiol 29:863–866

    Article  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 8:967–980

    Article  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum). Appl Environm Microbiol 37:1016–1024

    CAS  Google Scholar 

  • Umali García M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirilum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  Google Scholar 

  • Vande Broek A, Michiels J, Van Gool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol Plant Microbe Interact 6:592–600

    Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Döbereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Carlos H. Bellone for his help in the ARA and to Marcos A. Acosta for technical assistance. This work was supported by Consejo de Investigación de la Universidad Nacional de Tucumán (CIUNT) Program 26/A331 and Agencia Nacional de Promoción Científica y Tecnológica, BID1728/OC-AR-PICTO 2004-860. JCDR is researcher of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Pedraza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, R.O., Motok, J., Tortora, M.L. et al. Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295, 169–178 (2007). https://doi.org/10.1007/s11104-007-9273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9273-x

Keywords

Navigation