Skip to main content
Log in

Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BIA:

Benzylisoquinoline alkaloid

CID:

Collision-induced dissociation

CYP:

Cytochrome P450

ESI:

Electrospray ionization

EST:

Expressed sequence tag

HPLC:

High-pressure liquid chromatography

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

MRM:

Multiple reaction monitoring

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing or transcripts from two olive genotypes during fruit development. BMC Genomics 10:399–413

    Article  PubMed  Google Scholar 

  • Alcantara J, Bird DA, Franceschi VR, Facchini PJ (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol 138:173–183

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Miller JA, Chitty JA, Fist AJ, Gerlach WL, Larkin PJ (2008) Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy. Plant Biotechnol J 6:22–30

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidosis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powel WA, Wheeler N, Sederoff R, Carlson JE (2009) Comparison of the transcriptomes of American chestnut (Castanea dentate) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51–61

    Article  PubMed  Google Scholar 

  • Bernath J, Nemeth E, Petheo F (2003) Alkaloid accumulation in capsules of the selfed and cross-pollinated poppy. Plant Breeding 122:263–267

    Article  CAS  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Choi KB, Morishige T, Shitan N, Yazaki K, Sato F (2002) Molecular cloning and characterization of coclaurine N-methylatransferase from cultured cells of Coptis japonica. J Biol Chem 277:830–835

    Article  PubMed  CAS  Google Scholar 

  • De-Eknamkul W, Zenk MH (1992) Purification and properties of 1,2-dehydroreticuline reductase from Papaver somniferum seedlings. Phytochemistry 31:813–821

    CAS  Google Scholar 

  • Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G et al (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochodiacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Plant Biol 12:363–380

    Google Scholar 

  • Desgagné-Penix I, Khan MF, Schriemer DC, Nowak J, Facchini PJ (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252–268

    Article  PubMed  Google Scholar 

  • Diaz-Chavez ML, Rolf M, Gesell A, Kutchan TM (2011) Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Arch Biochem Biophys 507:186–193

    Article  PubMed  CAS  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci USA 88:9969–9973

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, DeLuca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269:26684–26690

    PubMed  CAS  Google Scholar 

  • Facchini PJ, Park S-U (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64:177–186

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG, Bull D (1996) Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol 112:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Hagel JM, Liscombe DK, Loukanina N, MacLeod BP, Samanani N, Zulak KG (2007) Opium poppy: blueprint for an alkaloid factory. Phytochem Rev 6:97–124

    Article  CAS  Google Scholar 

  • Fisinger U, Grobe N, Zenk MH (2006) Thebaine synthase: a new enzyme in the morphine pathway in Papaver somniferum. Nat Prod Commun 2:249–253

    Google Scholar 

  • Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars. J Nat Prod 68:666–673

    Article  PubMed  CAS  Google Scholar 

  • Frick S, Kramell R, Kutchan TM (2007) Metabolic engineering of a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab Eng 9:169–176

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Takeshita N, Terano Y, Fitchen JH, Tsujita T, Katagiri Y, Sato F, Yamada Y (1993) Expression of (S)-scoulerine 9-O-methyltransferase in Coptis japonica plants. Phytochemistry 34:949–954

    Article  CAS  Google Scholar 

  • Gerardy R, Zenk MH (1993) Formation of salutaridine from (R)-reticuline by a membrane bound cytochrome P450 enzyme from Papaver somniferum. Phytochemistry 32:79–86

    Article  Google Scholar 

  • Gesell A, Rolf M, Ziegler J, Díaz Chávez ML, Huang F-C, Kutchan TM (2009) CYP719B1 is salutaridine synthase, the C–C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem 284:24432–24442

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricker D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276:30717–30723

    Article  PubMed  CAS  Google Scholar 

  • Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chem Biol 6:273–275

    Article  CAS  Google Scholar 

  • Hagel JM, Weljie AM, Vogel HJ, Facchini PJ (2008) Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy. Plant Physiol 147:1805–1821

    Article  PubMed  CAS  Google Scholar 

  • Han X, Lamshoft M, Grobe N, Ren X, Fist AJ, Kutchan TM, Spiteller M, Zenk MH (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71:1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Poeaknapo C, Schmidt J, Zenk MH (2004) 1,2-Dehydroreticuline synthase, the branch point enzyme opening the morphinan biosynthetic pathway. Phytochemistry 65:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53:555–564

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ignatov A, Clark WG, Cline SD, Psenak M, Krueger J, Coscia CJ (1996) Elicitation of dihydrobenzophenanthridine oxidase in Sanguinaria canadensis cell cultures. Phytochemistry 43:1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family from cultured Coptis japonica cells. J Biol Chem 278:38557–38565

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2007) Molecular cloning and characterization of methylenedioxy bridge-forming enzymes involved in stylopine biosynthesis in Eschscholzia californica. FEBS J 274:1019–1035

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2009) CYP719A subfamily of cytochrome P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia californica. Plant Cell Rep 28:123–133

    Article  PubMed  CAS  Google Scholar 

  • Imelfort M, Edwards D (2009) De Novo sequencing of plant genomes using second-generation technologies. Briefings Bioinfo 10:609–618

    Article  CAS  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  • Kempe K, Higashi Y, Frick S, Sabarna K, Kutchan TM (2009) RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes. Phytochemistry 70:579–589

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Miller JAC, Allen RS, Chitty JA, Gerlach WL, Frick S, Kutchan TM, Fist AJ (2007) Increasing morphinan alkaloid production by over-expression codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5:26–37

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Facchini PJ (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22:3489–3503

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Facchini PJ (2011) Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol PMID: 21949209

  • Lenz R, Zenk MH (1994) Closure of the oxide bridge in morphine biosynthesis. Tetrahedron Lett 35:3897–3900

    Article  CAS  Google Scholar 

  • Liscombe DK, Facchini PJ (2007) Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J Biol Chem 282:14741–14751

    Article  PubMed  CAS  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:2501–2520

    PubMed  Google Scholar 

  • Liscombe DK, Ziegler J, Schmidt J, Ammer C, Facchini PJ (2009) Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing species. Plant J 60:729–743

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Li Y, Sun C, Wu Q, Song J, Sun Y, Steinmetz A, Chen S (2010) Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10:209–224

    Article  PubMed  Google Scholar 

  • Meisel L, Fonseca B, Gonzalez S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H (2005) A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 38:83–88

    Article  PubMed  CAS  Google Scholar 

  • Millgate AG, Pogson BJ, Wilson IW, Kutchan TM, Zenk MH, Gerlach WL, Fist AJ, Larkin PJ (2004) Analgesia: morphine-pathway block in top1 poppies. Nature 431:413–414

    Article  PubMed  CAS  Google Scholar 

  • Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507:194–203

    Article  PubMed  CAS  Google Scholar 

  • Montgomery CT, Cassels BK, Shamma M (1983) The rhoeadine alkaloids. J Nat Prod 46:441–453

    Article  CAS  Google Scholar 

  • Morishige T, Tsujita T, Yamada Y, Sato F (2000) Molecular characterization of the S-adenosyl-l-methionine: 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica. J Biol Chem 275:23398–23405

    Article  PubMed  CAS  Google Scholar 

  • Morishige T, Dubouzet E, Choi KB, Yazaki K, Sato F (2002) Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica of cells. Eur J Biochem 269:5659–5667

    Article  PubMed  CAS  Google Scholar 

  • Morishige T, Choi KB, Sato F (2004) In vivo bioconversion of tetrahydroisoquinoline by recombinant coclaurine N-methyltransferase. Biosci Biotechnol Biochem 68:939–941

    Article  PubMed  CAS  Google Scholar 

  • Neuman S, Bocker S (2010) Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788

    Article  Google Scholar 

  • Nyman U (1978) Selection for high thebaine/low morphine content (cpv Morph: The) in Papaver somniferum L. Heriditas 89:43–50

    Article  CAS  Google Scholar 

  • Nyman U (1980) Selection for high thebaine/low morphine content in Papaver somniferum L. II. Studies of the I4 and I5 generations from spontaneous mutant. Heriditas 93:121–124

    Article  CAS  Google Scholar 

  • Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM (2003) (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum- cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36:808–819

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for identification of repetitive sequences in plants. NAR 32. Database Issue 2004:D360–D363

    Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcazar R, Blazquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropryl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  PubMed  CAS  Google Scholar 

  • Paszkiewicz K, Studholme DJ (2010) De novo assembly of short reads. Briefings Bioinfo 5:457–472

    Article  Google Scholar 

  • Pauli HH, Kutchan TM (1998) Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3′-hydroxylase (CYP80b1), a new methyl jasmonate-inducible cytochrome P-450-dependent monooxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J 13:793–801

    Article  PubMed  CAS  Google Scholar 

  • Pienkny S, Brandt W, Schmidt J, Kramell R, Ziegler J (2009) Functional characterization of a novel benzylisoquinoline-O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J 60:56–67

    Article  PubMed  CAS  Google Scholar 

  • Poeaknapo C, Fisinger U, Zenk MH, Schmidt J (2004) Evaluation of the mass spectrometric fragmentation of codeine and morphine after 13C-isotope biosynthetic labeling. Phytochemistry 65:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Raith K, Neubert R, Poeaknapo C, Boettcher C, Zenk MH, Schmidt J (2003) Electrospray tandem mass spectrometric investigations of morphinans. J Am Soc Mass Spectrom 14:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Rueffer M, Zenk MH (1987) Enzymatic formation of protopines by a microsomal cytochrome P-450 system of Corydalis vaginans. Tetrahedron Lett 28:5307–5310

    Article  CAS  Google Scholar 

  • Rueffer M, Amann M, Zenk MH (1986) S-adenosyl-l-methionine: columbamine-O-methyltransferase, a compartmentalized enzyme in protoberberine biosynthesis. Plant Cell Rep 3:182–185

    Article  Google Scholar 

  • Samanani N, Facchini PJ (2002) Purification and characterization of norcoclaurine synthase, the first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J Biol Chem 277:33878–33883

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Liscombe DK, Facchini PJ (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 40:302–313

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Park SU, Facchini PJ (2005) Cell type-specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell 17:915–926

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Alcantara J, Bourgault R, Zulak KG, Facchini PJ (2006) The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J 47:547–563

    Article  PubMed  CAS  Google Scholar 

  • Sariyar G, Sari A, Freyer AJ, Guinaudeau H, Shamma M (1990) Quaternary isoquinoline alkaloids from Papaver species. J Nat Prod 53:1302–1306

    Article  CAS  Google Scholar 

  • Schmidt J, Raith K, Boettcher C, Zenk MH (2005) Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur J Mass Spectrom 11:325–333

    Article  CAS  Google Scholar 

  • Schmidt J, Boettcher C, Kuhnt C, Kutchan TM, Zenk MH (2007) Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass spectrometry after [ring-13C6]-tyramine feeding. Phytochemistry 68:189–202

    Article  PubMed  CAS  Google Scholar 

  • Schumacher H-M, Zenk MH (1988) Partial purification and characterization of dihydrobenzophenanthridine oxidase from Eschscholtzia californica cell suspension cultures. Plant Cell Rep 7:43–46

    Article  CAS  Google Scholar 

  • Sharma JR, Lai RL, Gupta AP, Misra HO, Pant V, Singh NK, Pandey V (1999) Development of non-narcotic (opiumless and alkaloid-free) opium poppy, Papaver somniferum. Plant Breeding 118:449–452

    Article  Google Scholar 

  • Srivastava HK, Singh D (2006) Honeybees foraging response in genetically diversified opium poppy. Bioresour Technol 97:1578–1581

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EMK, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using GS GLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262–273

    Article  PubMed  Google Scholar 

  • Suzuki S, Ono N, Furusawa C, Ying BW, Yomo T (2011) Comparison of sequence reads obtained from three next-generation sequencing platforms. PLoS 6:e19534:1–6

    Google Scholar 

  • Takemura T, Ikezawa N, Iwasa K, Sato F (2012) Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells. doi:10.1016/j.phytochem.2012.02.013

  • Takeshita N, Fujiwara H, Mimura H, Fitchen JH, Yamada Y, Sato F (1995) Molecular cloning and characterization of S-adenosyl-l-methionine: scoulerine-9-O-methyltransferase from cultured cells of Coptis japonica. Plant Cell Physiol 36:29–36

    PubMed  CAS  Google Scholar 

  • Tanahashi T, Zenk MH (1990) Elicitor induction and characterization of microsomal protopine-6-hydroxylase, the central enzyme in benzophenanthridine alkaloid biosynthesis. Phytochemistry 29:1113–1122

    Article  CAS  Google Scholar 

  • Torres TT, Metta M, Ottenwalder B, Schlotterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18:172–177

    Article  PubMed  CAS  Google Scholar 

  • Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18:465–475

    Article  PubMed  CAS  Google Scholar 

  • Vega-Arreguin JC, Ibarra-Laclette E, Jimenez-Moraila B, Martinez O, Vielle-Calzada JP, Herrera-Estrella A (2009) Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics 10:299–308

    Article  PubMed  Google Scholar 

  • Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome using 454 pyrosequencing. BMC Genomics 10:465–475

    Article  PubMed  Google Scholar 

  • Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42

    Article  PubMed  CAS  Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101:13957–13962

    Article  PubMed  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz M, Wojtowicz A (2009) Effectiveness of chemical protection against weeds applied to poppy (Papaver somniferum L.). J Plant Prot Res 49:209–215

    Article  CAS  Google Scholar 

  • Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62:461–471

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu SN, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa ssp indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94

    Article  PubMed  Google Scholar 

  • Zhao ZJ, Ng D (2007) cDNA library creation protocol. http://my.jgi.doe.gov/general/protocols/SOP_DRAFT_cDNA_library_creation_454.doc

  • Ziegler J, Díaz-Chávez ML, Kramell R, Ammer C, Kutchan TM (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222:458–471

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Voigtlander S, Schmidt J, Kramell R, Miersch O, Ammer C, Gesell A, Kutchan TM (2006) Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J 48:177–192

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtlander S, Gesell A, Pienkny S, Brandt W (2009) Evolution of morphine biosynthesis in opium poppy. Phytochemistry 70:1696–1707

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PJF holds the Canada Research Chair in Plant Metabolic Processes Biotechnology. This work was sponsored by a Strategic Project Grant and a Discovery and Research Tools and Infrastructure Grant from the Natural Science and Engineering Research Council of Canada to PJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Facchini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2012_9913_MOESM1_ESM.pdf

Chromatographic and spectral data used for identification and quantification of benzylisoquinoline alkaloids by LC–MS/MS analysis. CID spectra shown in red were taken from the references provided. All other CID spectra were determined from authentic standards (PDF 105 kb)

11103_2012_9913_MOESM2_ESM.pdf

Selected unknown compounds detected in latex extracts of eight opium poppy cultivars determined by LC–MS/MS analysis (PDF 79 kb)

List of the top 100 most abundant unigenes in each of eight opium poppy cultivars (PDF 320 kb)

List of the top 100 most abundant unigenes in each of eight opium poppy cultivars (PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desgagné-Penix, I., Farrow, S.C., Cram, D. et al. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol Biol 79, 295–313 (2012). https://doi.org/10.1007/s11103-012-9913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9913-2

Keywords

Navigation