Skip to main content
Log in

MicroRNAs in the moss Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter’s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121

    Article  PubMed  CAS  Google Scholar 

  • Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932

    Article  PubMed  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartell DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  PubMed  CAS  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7:653–662

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  PubMed  CAS  Google Scholar 

  • Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462

    Article  PubMed  CAS  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  PubMed  CAS  Google Scholar 

  • Cove DJ, Ashton NW (1988) Growth-regulation and development in physcomitrella-patens—an insight into growth-regulation and development of bryophytes. Bot J Linn Soc 98:247–252

    Article  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  PubMed  CAS  Google Scholar 

  • Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang MB (2010) Efficient silencing of endogenous MicroRNAs using artificial MicroRNAs in Arabidopsis thaliana. Mol Plant. doi:10.1093/mp/ssq061

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16(9):939–944

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219. doi:10.1371/journal.pone.0000219

    Article  PubMed  Google Scholar 

  • Fattash I, Voss B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7:13. doi:10.1186/1471-2229-7-13

    Article  PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2007) The ancestral developmental tool kit of land plants. Int J Plant Sci 168:1–35

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Frank W, Decker EL, Reski R (2005a) Molecular tools to study Physcomitrella patens. Plant Biol (Stuttg) 7:220–227

    Article  CAS  Google Scholar 

  • Frank W, Ratnadewi D, Reski R (2005b) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394

    Article  PubMed  CAS  Google Scholar 

  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Seminars cell Dev Biol 19:586–595

    Article  CAS  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    Article  PubMed  CAS  Google Scholar 

  • Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam HG (2003) The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 13:161–172

    Article  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) Blade-On-Petiole-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    Article  PubMed  CAS  Google Scholar 

  • Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-dependent RNA Polymerase6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    Article  PubMed  Google Scholar 

  • Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224

    PubMed  CAS  Google Scholar 

  • Jun JH, Ha CM, Fletcher JC (2010) Blade-On-Petiole1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating Asymmetric Leaves2. Plant Cell 22:62–76

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    Article  PubMed  CAS  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  PubMed  CAS  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  PubMed  CAS  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of Auxin Response Factor10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Luo QJ, Samanta MP, Koksal F, Janda J, Galbraith DW, Richardson CR, Ou-Yang F, Rock CD (2009) Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet 5:e1000457. doi:10.1371/journal.pgen.1000457

    Article  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  • McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The Blade-On-Petiole genes are essential for abscission zone formation in Arabidopsis. Development 135:1537–1546

    Article  PubMed  CAS  Google Scholar 

  • Menand B, Calder G, Dolan L (2007) Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. J Exp Bot 58:1843–1849

    Article  PubMed  CAS  Google Scholar 

  • Merchan F, Boualem A, Crespi M, Frugier F (2009) Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 10:R136. doi:10.1186/gb-2009-10-12-r136

    Article  PubMed  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  PubMed  CAS  Google Scholar 

  • Niu L, Zhang Y, Pei Y, Liu C, Cao X (2008) Redundant requirement for a pair of Protein Arginine Methyltransferase4 homologs for the proper regulation of Arabidopsis flowering time. Plant Physiol 148:490–503

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) Carpel Factory. A Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69

    Article  PubMed  CAS  Google Scholar 

  • Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15

    CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    Article  PubMed  CAS  Google Scholar 

  • Saleh O, Issman N, Seumel GI, Stav R, Samach A, Reski R, Frank W, Arazi T (2011) MicroRNA534a control of Blade-On-Petiole 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. Plant J 65:661–674

    Article  PubMed  CAS  Google Scholar 

  • Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R (2004) Mapping of the Physcomitrella patens proteome. Phytochemistry 65:1589–1607

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491

    Article  PubMed  CAS  Google Scholar 

  • Schumaker KS, Dietrich MA (1998) Hormone-induced signaling during moss development. Annu Rev Plant Physiol Plant Mol Biol 49:501–523

    Article  PubMed  CAS  Google Scholar 

  • Singer SD, Krogan NT, Ashton NW (2007) Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Rep 26:1155–1169

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  PubMed  CAS  Google Scholar 

  • Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T (2006a) Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J 47:25–37

    Article  PubMed  CAS  Google Scholar 

  • Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006b) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031. doi:10.1371/journal.pgen.1001031

    Article  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gen Dev 18:1187–1197

    Article  CAS  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    PubMed  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3:794–806

    Article  PubMed  Google Scholar 

  • Willenbrock H, Salomon J, Søkilde R, Barken KB, Hansen TN, Nielsen FC, Møller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15:2028–2034

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Michael Kravchik and Eugene Plavskin for critical reading of the manuscript. This work was supported by the Israel Science Foundation Grant 825/05 to T.A. This is contribution no. 103/2011 series from the Agricultural Research Organization, Volcani Center, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzahi Arazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arazi, T. MicroRNAs in the moss Physcomitrella patens . Plant Mol Biol 80, 55–65 (2012). https://doi.org/10.1007/s11103-011-9761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9761-5

Keywords

Navigation