Skip to main content
Log in

Advanced methods for the study of the chemistry and the metabolism of lichens

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Lichens are compound entities of a fungal partner (“mycobiont”) and one or more photosynthetically active algae or cyanobacteria (“photobionts”). The organisms live in an intimate, symbiotic association which has been classified as a mutualistic or controlled parasitic relationship. Several metabolites from lichens display unique structures with unknown functions, and only a few model species have been analysed comprehensively. The complex metabolic interplay between the organisms in lichens is also incompletely understood. Earlier experiments with 14C-labelled precursors indicated that the photobionts produce from CO2 glucose or sugar alcohols (e.g. ribitol and arabitol) which are then transferred to the mycobionts. In the fungi, these compounds are believed to be converted into mannitol serving as the carbon and energy source in the downstream metabolic processes. Recent methodological developments in spectroscopy and “systems biology” now enable a concise analysis of the metabolite profiles, networks and fluxes by non-targeted quantitative approaches. In this review, we summarize the current knowledge about lichen metabolism and report on the potential of the advanced methods to reinvestigate lichen chemistry and metabolism on a quantitative basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Armaleo D, May S (2009) Sizing the fungal and algal genomes of the lichen Cladonia grayi through quantitative PCR. Symbiosis 49:43–51

    Article  Google Scholar 

  • Asplund J, Larsson P, Vatne S et al (2010) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J Ecol 98:218–225

    Article  Google Scholar 

  • Aubert S, Juge C, Boisson AM et al (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297

    Article  PubMed  CAS  Google Scholar 

  • Baker M (2011) Metabolomics: from small molecules to big ideas. Nat Meth 8:117–121

    Article  CAS  Google Scholar 

  • Beck A, Koop HU (2001) Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis 31:57–67

    Google Scholar 

  • Beck A, Persoh D (2009) Flechten und ihre Stellung im Reich der Pilze. In: der Wissenschaften BA (ed) Rundgespräche der Kommission für Ökologie. Ökologische Rolle der Flechten, vol 36. Verlag Dr. Friedrich Pfeil, München, pp 13–24

    Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    Article  CAS  Google Scholar 

  • Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326

    Article  Google Scholar 

  • Beschel RE (1961) Dating rock surfaces by lichen growth and its application to glaciology and physiography (lichenometry). In: Raasch GO (ed) Geology of the arctic, vol 2. University of Toronto Press, Totonto, pp 1044–1062

    Google Scholar 

  • Blum OB (1973) Water relations. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 381–400

    Google Scholar 

  • Bogo D, de Matos MF, Honda NK et al (2010) In vitro antitumour activity of orsellinates. Z Naturforsch C 65:43–48

    PubMed  CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287

    Article  CAS  Google Scholar 

  • Bull WB (1996) Dating San Andreas fault earthquakes with lichenometry. Geology 24:111–114

    Article  Google Scholar 

  • Dahlman L, Persson J, Palmqvist K et al (2004) Organic and inorganic nitrogen uptake in lichens. Planta 219:459–467

    Article  PubMed  CAS  Google Scholar 

  • de Bary A (1879) Die Erscheinung der Symbiose. Verlag Karl J, Trübner

    Google Scholar 

  • de Vera JP, Mohlmann D, Butina F et al (2010) Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10:215–227

    Article  PubMed  Google Scholar 

  • Drew EA, Smith DC (1966) The physiology of the symbiosis in Peltigera polydactyla (Neck.) Hoffm. Lichenologist 3:197–201

    Article  Google Scholar 

  • Easton RM (1994) Lichens and rocks: a review. Geosci Can 21:59–76

    Google Scholar 

  • Eisenreich W, Bacher A (2000) Elucidation of biosynthetic pathways by retrodictive/predictive comparison of isotopomer patterns determined by NMR spectroscopy. Genet Eng (N Y) 22:121–153

    CAS  Google Scholar 

  • Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68:2799–2815

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Kupfer E, Weber W et al (1997) Tracer studies with crude U-13C-lipid mixtures. Biosynthesis of the lipase inhibitor lipstatin. J Biol Chem 272:867–874

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Dandekar T, Heesemann J et al (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412

    Article  PubMed  CAS  Google Scholar 

  • Esimone CO, Grunwald T, Nworu CS et al (2009) Broad spectrum antiviral fractions from the lichen Ramalina farinacea (L.) Ach. Chemotherapy 55:119–126

    Article  PubMed  CAS  Google Scholar 

  • Eylert E, Schar J, Mertins S et al (2008) Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017

    Article  PubMed  CAS  Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105

    Article  PubMed  Google Scholar 

  • Gauslaa Y (2009) Ecological functions of lichen compounds. In: der Wissenschaften BA (ed) Rundgespräche der Kommission für Ökologie. Ökologische Rolle der Flechten, vol 36. Verlag Dr. Friedrich Pfeil, München, pp 95–108

    Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 6:75–82

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  Google Scholar 

  • Gob F, Petit F, Bravard J-P et al (2003) Lichenometry application to historical and subrecent dynamics and sediment transport of a Corsican stream (Figarella River—France). Q Sci Rev 22:2111–2124

    Article  Google Scholar 

  • Götz A, Eylert E, Eisenreich W et al (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 5:e10586

    Article  PubMed  Google Scholar 

  • Green TGA, Smith DC (1974) Lichen physiology. XIV. Differences between lichen algae in symbiosis and in isolation. New Phytol 73:753–766

    Article  CAS  Google Scholar 

  • Gupta V (2005) Application of lichenometry to slided materials in the higher Himalayan landslide zone. Curr Sci 89:1032–1036

    Google Scholar 

  • Hansen ES (2008) The application of lichenometry in dating of glacier deposits. Geografisk Tidsskrift—Danish J Geogr 108:143–151

    Google Scholar 

  • Hauck M, Willenbruch K, Leuschner C (2009) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35:71–73

    Article  PubMed  CAS  Google Scholar 

  • Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13:337–343

    Article  PubMed  CAS  Google Scholar 

  • Hill DJ, Smith DC (1972) Lichen physiology. XII. The inhibition technique. New Phytol 71:15–30

    Article  CAS  Google Scholar 

  • Högnabba F, Stenroos S, Thell A et al (2009) Evolution of cyanobacterial symbioses in Ascomycota. Bibliotheca Lichenologica 99:163–184

    Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, pp 1–494

    Google Scholar 

  • Joneson S, Armaleo D, Lutzoni FM (2011) Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 103:291–306

    Article  PubMed  CAS  Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 37–99

    Google Scholar 

  • Kershaw KA, Millbank JW (1970) Nitrogen metabolism in lichens. II. The partition of cephalodial-fixed nitrogen between the mycobiont and the phycobionts of Peltigera aphthosa. New Phytol 69:75–79

    Article  CAS  Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75:494–501

    Article  Google Scholar 

  • Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol 66:143–184

    Article  CAS  Google Scholar 

  • Liao C, Piercey-Normore MD, Sorensen JL et al (2010) In situ imaging of usnic acid in selected Cladonia spp by vibrational spectroscopy. Analyst 135:3242–3248

    Article  PubMed  CAS  Google Scholar 

  • Lindon JC (2010) Overview of NMR-based metabonomics. In: John L (ed) Encyclopedia of spectroscopy and spectrometry. Academic Press, Oxford, pp 2058–2068

    Chapter  Google Scholar 

  • Lines CEM, Ratcliffe RG, Rees TAV et al (1989) A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447–456

    Article  CAS  Google Scholar 

  • Ludwig C, Viant MR (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21:22–32

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane JD, Kershaw KA (1985) Some aspects of carbohydrate metabolism in lichens. In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 1–8

    Google Scholar 

  • Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33

    Article  PubMed  CAS  Google Scholar 

  • Millbank JW, Kershaw KA (1969) Nitrogen metabolism in lichens. I. Nitrogen fixation in the cephalodia of Peltigera aphthosa. New Phytol 68:721–729

    Article  CAS  Google Scholar 

  • Millot M, Tomasi S, Studzinska E et al (2009) Cytotoxic constituents of the lichen Diploicia canescens. J Nat Prod 72:2177–2180

    Article  PubMed  CAS  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    PubMed  Google Scholar 

  • Motohashi K, Takagi M, Yamamura H et al (2010) A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J Antibiot (Tokyo) 63:545–548

    CAS  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008a) Genetic diversity and photobiont association in selected taxa of the Tephromela atra group (Lecanorales, lichenized Ascomycota). Mycological Progress 7:147–160

    Article  Google Scholar 

  • Muggia L, Schmitt I, Grube M (2008b) Purifying selection is a prevailing motif in the evolution of ketoacyl synthase domains of polyketide synthases from lichenized fungi. Mycol Res 112:277–288

    Article  PubMed  CAS  Google Scholar 

  • Paudel B, Bhattarai HD, Lee HK et al (2010) Antibacterial activities of ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. Z Naturforsch C 65:34–38

    PubMed  CAS  Google Scholar 

  • Peveling E (1988) Beziehungen zwischen den Symbiosepartnern in Flechten. Naturwissenschaften 75:77–86

    Article  Google Scholar 

  • Rai AN (1988) Nitrogen metabolism. In: Galun M (ed) CRC handbook of lichenology, vol 1. CRC Press, Boca Raton, pp 201–237

    Google Scholar 

  • Rai AN (2002) Cyanolichens: nitrogen metabolism. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic, Dordrecht, pp 97–115

    Google Scholar 

  • Richardson DHS (1974) The vanishing lichens. Their history, biology and importance. Hafner Press (Macmillan Publishing Co.), New York

    Google Scholar 

  • Richardson DHS, Smith DC (1966) The physiology of the symbiosis in Xanthoria aureola. Lichenologist 3:202–206

    Article  Google Scholar 

  • Richardson DHS, Smith DC (1968a) Lichen physiology. IX. Carbohydrate movement from the Trebouxia symbiont of Xanthoria aureola to the fungus. New Phytol 67:61–68

    Article  CAS  Google Scholar 

  • Richardson DHS, Smith DC (1968b) Lichen physiology. X. The isolated algal and fungal symbionts of Xanthoria aureola. New Phytol 67:69–77

    Article  CAS  Google Scholar 

  • Roux A, Lison D, Junot C et al (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44:119–135

    Article  PubMed  CAS  Google Scholar 

  • Rundel PW (1988) Water relations. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Rustichelli C, Visioli G, Kostecka D et al (2008) Proteomic analysis in the lichen Physcia adscendens exposed to cadmium stress. Environ Pollut 156:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Ryan D, Robards K, Prenzler PD et al (2011) Recent and potential developments in the analysis of urine: a review. Analyt Chimica Acta 684:17–29

    Article  CAS  Google Scholar 

  • Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4:e4437

    Article  PubMed  Google Scholar 

  • Schmitt I, Kautz S, Lumbsch HT (2008) 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res 112:289–296

    Article  PubMed  CAS  Google Scholar 

  • Sedelnikova NV, Cheremisin DV (2001) The use of lichens for dating of petroglyphs. Sibirian J Ecol 8:479–481

    Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    Article  PubMed  Google Scholar 

  • Sundberg B, Lundberg P, Ekblad A et al. (1999) In vivo 13C NMR spectroscopy of carbon fluxes in four diverse lichens. Ph.D. thesis paper VI. B. Sundberg. In: University of Umea (ed), Physiological ecology of lichens growth. Umea University, Umea

  • Tibell L (2001) Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist 104:191–198

    Article  Google Scholar 

  • Tokiwano T, Satoh H, Obara T et al (2009) A lichen substance as an antiproliferative compound against HL-60 human leukemia cells: 16-O-acetyl-leucotylic acid isolated from Myelochroa aurulenta. Biosci Biotechnol Biochem 73:2525–2527

    Article  PubMed  CAS  Google Scholar 

  • Wilson ID, Nicholson JK (2007) Metabonomics. In: John BT, David JT (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 989–1007

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Eisenreich or Andreas Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenreich, W., Knispel, N. & Beck, A. Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10, 445–456 (2011). https://doi.org/10.1007/s11101-011-9215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-011-9215-3

Keywords

Navigation