Skip to main content
Log in

Leaf development, gas exchange characteristics, and photorespiratory activity in maize seedlings

  • Original Papers
  • Published:
Photosynthetica

Abstract

Five decades ago, a novel mode of CO2 assimilation that was later described as C4-photosynthesis was discovered on mature leaves of maize (Zea mays L.) plants. Here we show that 3- to 5-day-old developing maize leaves recapitulate the evolutionary advance from the ancient, inefficient C3 mode of photosynthesis to the C4 pathway, a mechanism for overcoming the wasteful process of photorespiration. Chlorophyll fluorescence measurements documented that photorespiration was high in 3-day-old juvenile primary leaves with non-specialized C3-like leaf anatomy and low in 5-day-old organs with the typical “Kranz-anatomy” of C4 leaves. Photosynthetic gas (CO2)-exchange measurements on 5-day-old leaves revealed the characteristic features of C4 photosynthesis, with a CO2 compensation point close to zero and little inhibition of photosynthesis by the normal oxygen concentration in the air. This indicates a very low photorespiratory activity in contrast to control experiments conducted with mature C3 sunflower (Helianthus annuus L.) leaves, which display a high rate of photorespiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

CO2-CP:

carbon dioxide compensation point

ΔF/Fm′:

effective quantum yield of PSII of light-adapted leaves

PSII:

photosystem II

References

  • Bassham, J.A., Calvin, M.: The Path of Carbon in Photosynthesis. — Prentice-Hall-Englewood Cliffs, New Jersey 1957.

    Google Scholar 

  • Berry, J.A., Downton, W.J.S., Tregunna, E.B.: The photosynthetic carbon metabolism of Zea mays and Gomphrena globosa: the location of the CO2 fixation and the carboxyl transfer reactions. — Can. J. Bot. 48: 777–786, 1970.

    Article  CAS  Google Scholar 

  • Berry, J.A., Osmond, C.B., Lorimer, G.H.: Fixation of 18O2 during photorespiration. Kinetics and steady-state studies of the photorespiratory carbon oxidation cycle with intact leaves and isolated chloroplasts of C3 plants. — Plant Physiol. 62: 954–967, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Calvin, M.: Forty years of photosynthesis and related activities. — Photosynth. Res. 21: 2–16, 1989.

    Google Scholar 

  • Dai, Z., Ku, M.S.B. Edwards, G. B.: C4 photosynthesis. The effects of leaf development on the CO2-concentrating mechanism and photorespiration in maize. — Plant Physiol. 107: 815–825, 1995.

    CAS  PubMed  Google Scholar 

  • De Veau, E.J., Burris, J.E.: Photorespiratory rates in wheat and maize as determined by 18O-labeling. — Plant Physiol. 90: 500–511, 1989.

    Article  PubMed  Google Scholar 

  • El-Sharkawy, M.A.: Pioneering research on C4 leaf anatomical, physiological, and agronomic characteristics of tropical monocot and dicot plant species: Implications for crop water relations and productivity in comparison to C3 cropping systems. — Photosynthetica 47: 163–183, 2009.

    Article  Google Scholar 

  • Forrester, M.L., Krotkov, G., Nelson, C.D.: Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. II. Corn and other monocotyledons. — Plant Physiol. 41: 428–431, 1966.

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum, O., Siebke, K., von Caemmerer, S., Conroy, J.P.: The photosynthesis of young Panicum C4 leaves is not C3-like. — Plant Cell Environ. 21: 1123–1131, 1998.

    Article  CAS  Google Scholar 

  • Hatch, M.D.: C4-photosynthesis: An unlikely process full of surprises. — Plant Cell Physiol. 33: 333–342, 1992.

    CAS  Google Scholar 

  • Hatch, M.D.: C4 photosynthesis: discovery and resolution. — Photosynth. Res. 73: 251–256, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hatch, M.D., Slack, C.R.: Photosynthesis in sugarcane leaves: a new carboxylation reaction and the pathway of sugar formation. — Biochem. J. 101: 103–111, 1966.

    CAS  PubMed  Google Scholar 

  • Jucknischke, A., Kutschera, U.: The role of the cotyledons and primary leaves during seedling etablishment in sunflower. — J. Plant Physiol. 153: 700–705, 1998.

    CAS  Google Scholar 

  • Karpilow, Y.S.: The distribution of radioactive carbon14 amongst the products of photosynthesis in maize. — Trans. Kazan Agr. Inst. 41: 15–24, 1960.

    Google Scholar 

  • Kutschera, U., Briggs, W.R.: From Charles Darwin’s botanical country-house studies to modern plant biology. — Plant Biol. 11: 785–795, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kutschera, U., Niklas, K.J.: Photosynthesis research on yellowtops: macroevolution in progress. — Theory Biosci. 125: 81–92, 2006.

    CAS  PubMed  Google Scholar 

  • Kutschera, U., Niklas, J.K.: Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. — Naturwissenschaften 96: 1339–1354, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Leakey, A.D.B., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort D.R., Long, S.P.: Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. — Plant Physiol. 140: 779–790, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Majeran, W., van Wijk, K.J.: Cell-type-specific differentiation of chloroplasts in C4 plants. — Trends Plant Sci. 14: 100–109, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Niklas, K.J., Kutschera, U.: The evolutionary development of plant body plans. — Funct. Plant Biol. 36: 682–695, 2009.

    Article  Google Scholar 

  • Niklas, K.J., Kutschera, U.: The evolution of the land plant life cycle. — New Phytol. 185: 27–41, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Sage, R.F.: The evolution of C4 photosynthesis. — New Phytol. 161: 341–370, 2004.

    Article  CAS  Google Scholar 

  • Scherp, P., Grotha, R., Kutschera, U.: Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. — Plant Cell Rep. 20: 143–149, 2001.

    Article  CAS  Google Scholar 

  • Stebbins, G.L.: Variation and Evolution in Plants. — Columbia Univ. Press, New York 1950.

    Google Scholar 

  • Tregunna, E.B., Krotkov, G., Nelson, C.D.: Effect of oxygen on the rate of photorespiration in detached tobacco leaves. — Physiol. Plant. 19: 723–733, 1966.

    Article  Google Scholar 

  • Voznesenskaya, E.V., Franceschi, K.O., Kiirats, V.R., Freitag, H., Edwards, G.E.: Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414: 543–546, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Zelitch, I., Schultes, N.P., Peterson, R. B., Brown, P., Brutnell, T. P.: High glycolate oxidase activity is required for survival of maize in normal air. — Plant Physiol. 149: 195–204, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Alexander von Humboldt Foundation (AvH-fellowships 2007/2008, Stanford/USA to U. K.). R.P. (Present address: ICG-3:Phytosphere Forschungszentrum Jülich, 52425 Jülich, Germany) was supported by the Marie Curie International Outgoing Fellowship Program (Nr: 041060 — LIFT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kutschera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutschera, U., Pieruschka, R. & Berry, J.A. Leaf development, gas exchange characteristics, and photorespiratory activity in maize seedlings. Photosynthetica 48, 617–622 (2010). https://doi.org/10.1007/s11099-010-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0079-3

Additional key words

Navigation