Skip to main content

Advertisement

Log in

Pharmacokinetics and Metabolism of 2-Aminothiazoles with Antiprion Activity in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To discover drugs lowering PrPSc in prion-infected cultured neuronal cells that achieve high concentrations in brain to test in mouse models of prion disease and then treat people with these fatal diseases.

Methods

We tested 2-AMT analogs for EC50 and PK after a 40 mg/kg single dose and 40–210 mg/kg/day doses for 3 days. We calculated plasma and brain AUC, ratio of AUC/EC50 after dosing. We reasoned that compounds with high AUC/EC50 ratios should be good candidates going forward.

Results

We evaluated 27 2-AMTs in single-dose and 10 in 3-day PK studies, of which IND24 and IND81 were selected for testing in mouse models of prion disease. They had high concentrations in brain after oral dosing. Absolute bioavailability ranged from 27–40%. AUC/EC50 ratios after 3 days were >100 (total) and 48–113 (unbound). Stability in liver microsomes ranged from 30–>60 min. Ring hydroxylated metabolites were observed in microsomes. Neither was a substrate for the MDR1 transporter.

Conclusions

IND24 and IND81 are active in vitro and show high AUC/EC50 ratios (total and unbound) in plasma and brain. These will be evaluated in mouse models of prion disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2-AMT:

2-aminothiazole scaffold

AUC:

area under the drug concentration time curve

C3-day :

drug concentration after 3 days of dosing

CJD:

Creutzfeldt-Jakob disease

Cl:

clearance (total, intrinsic, hepatic, or otherwise)

Cmax :

maximum drug concentration

dpi:

days postinoculation with prions

EC50 :

potency; drug concentration producing 50% of the maximal effect

FaSSIF:

fasted-state simulated intestinal fluid

HTS:

high-throughput screening

IV:

intravenous

MDCK-MDR1:

Madin Darby canine kidney cells transfected with MDR1 gene

MDR1:

multidrug resistance protein 1, ATP-binding cassette sub-family B member 1

MIC:

minimum inhibitory concentration

P-gp:

p-glycoprotein

PK:

pharmacokinetics

PO:

oral

PrPC :

benign normally occurring prion protein on cell surface or inside cell

PrPSc :

abnormal, misfolded, pathogenic form of PrPC

RML:

Rocky Mountain Laboratory

SAR:

structure-activity relationship

ScN2a-cl3:

scrapie (RML)-infected neuroblastoma cells that overexpress PrPC

V:

volume of distribution (steady-state or otherwise)

References

  1. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–44.

    Article  PubMed  CAS  Google Scholar 

  2. Weissmann C. Spongiform encephalopathies - the prion’s progress. Nature. 1991;349:569–71.

    Article  PubMed  CAS  Google Scholar 

  3. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519–50.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner SB. Prions and neurodegenerative diseases. N Engl J Med. 1987;317:1571–81.

    Article  PubMed  CAS  Google Scholar 

  5. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, et al. Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature. 1989;338:342–5.

    Article  PubMed  CAS  Google Scholar 

  6. Alpers M, Gajdusek DC. Changing patterns of kuru: epidemiological changes in the period of increasing contact of the Fore people with western civilization. Am J Trop Med Hyg. 1965;14:852–79.

    PubMed  CAS  Google Scholar 

  7. Prusiner SB. Shattuck lecture — neurodegenerative diseases and prions. N Engl J Med. 2001;344:1516–26.

    Article  PubMed  CAS  Google Scholar 

  8. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.

    PubMed  CAS  Google Scholar 

  9. Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem. 2009;78:177–204.

    Article  PubMed  CAS  Google Scholar 

  10. DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB. Identification of prion amyloid filaments in scrapie-infected brain. Cell. 1985;41:221–35.

    Article  PubMed  CAS  Google Scholar 

  11. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science. 2005;307:262–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14:504–6.

    Article  PubMed  CAS  Google Scholar 

  13. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA. 2009;106:13010–5.

    Article  PubMed  CAS  Google Scholar 

  14. Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci USA. 2009;106:9679–84.

    Article  PubMed  CAS  Google Scholar 

  15. Sydow A, Mandelkow EM. ‘Prion-Like’ propagation of mouse and human tau aggregates in an inducible mouse model of tauopathy. Neurodegener Dis. 2010;7:28–31.

    Article  PubMed  CAS  Google Scholar 

  16. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003;26:267–98.

    Article  PubMed  CAS  Google Scholar 

  17. Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem. 2006;281:13828–36.

    Article  PubMed  CAS  Google Scholar 

  18. Race RE, Fadness LH, Chesebro B. Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol. 1987;68:1391–9.

    Article  PubMed  Google Scholar 

  19. Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol. 2003;77:10288–94.

    Article  PubMed  CAS  Google Scholar 

  20. Kocisko DA, Caughey B, Morrey JD, Race RE. Enhanced antiscrapie effect using combination drug treatment. Antimicrob Agents Chemother. 2006;50:3447–9.

    Article  PubMed  CAS  Google Scholar 

  21. Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain. 2006;129:2241–65.

    Article  PubMed  Google Scholar 

  22. Sim VL, Caughey B. Recent advances in prion chemotherapeutics. Infect Disord Drug Targets. 2009;9:81–91.

    Article  PubMed  CAS  Google Scholar 

  23. Korth C, May BCH, Cohen FE, Prusiner SB. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA. 2001;98:9836–41.

    Article  PubMed  CAS  Google Scholar 

  24. May BCH, Witkop J, Sherrill J, Anderson MO, Madrid PB, Zorn JA, et al. Structure-activity relationship study of 9-aminoacridine compounds in scrapie-infected neuroblastoma cells. Bioorg Med Chem Lett. 2006;16:4913–6.

    Article  PubMed  CAS  Google Scholar 

  25. Kempster S, Bate C, Williams A. Simvastatin treatment prolongs the survival of scrapie-infected mice. NeuroReport. 2007;18:479–82.

    Article  PubMed  CAS  Google Scholar 

  26. Kimata A, Nakagawa H, Ohyama R, Fukuuchi T, Ohta S, Doh-ura K, et al. New series of antiprion compounds: pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J Med Chem. 2007;50:5053–6.

    Article  PubMed  CAS  Google Scholar 

  27. Thompson MJ, Borsenberger V, Louth JC, Judd KE, Chen B. Design, synthesis, and structure–activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity in a cell line model of prion disease. J Med Chem. 2009;52:7503–11.

    Article  PubMed  CAS  Google Scholar 

  28. Kawasaki Y, Kawagoe K, Chen CJ, Teruya K, Sakasegawa Y, Doh-ura K. Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J Virol. 2007;81:12889–98.

    Article  PubMed  CAS  Google Scholar 

  29. Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, et al. Branched polyamines cure prion-infected neuroblastoma cells. J Virol. 2001;75:3453–61.

    Article  PubMed  CAS  Google Scholar 

  30. Ghaemmaghami S, May BCH, Renslo AR, Prusiner SB. Discovery of 2-aminothiazoles as potent antiprion compounds. J Virol. 2010;84:3408–12.

    Article  PubMed  CAS  Google Scholar 

  31. Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR. 2-Aminothiazoles as therapeutic leads for prion diseases. J Med Chem. 2011;54:1010–21.

    Article  PubMed  CAS  Google Scholar 

  32. Craig WA. The role of pharmacodynamics in effective treatment of community-acquired pathogens. Johns Hopkins Adv Stud Med. 2002;2:126–34.

    Google Scholar 

  33. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44:79–86.

    Article  PubMed  CAS  Google Scholar 

  34. Jonen HG, Werringloer J, Prough RA, Estabrook RW. The reaction of phenylhydrazine with microsomal cytochrome P-450. Catalysis of heme modification. J Biol Chem. 1982;257:4404–11.

    PubMed  CAS  Google Scholar 

  35. Ghaemmaghami S, Ullman J, Ahn M, St. Martin S, Prusiner SB. Chemical induction of misfolded prion protein conformers in cell culture. J Biol Chem. 2010;285:10415–23.

    Article  PubMed  CAS  Google Scholar 

  36. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27:1350–9.

    PubMed  CAS  Google Scholar 

  37. Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990;7:902–10.

    Article  PubMed  CAS  Google Scholar 

  38. Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002;23:327–38.

    Article  PubMed  CAS  Google Scholar 

  39. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker, Inc; 1982.

    Google Scholar 

  40. Ha-Duong NT, Dijols S, Macherey AC, Goldstein JA, Dansette PM, Mansuy D. Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry. 2001;40:12112–22.

    Article  PubMed  CAS  Google Scholar 

  41. Korth C, Kaneko K, Groth D, Heye N, Telling G, Mastrianni J, et al. Abbreviated incubation times for human prions in mice expressing a chimeric mouse–human prion protein transgene. Proc Natl Acad Sci USA. 2003;100:4784–9.

    Article  PubMed  CAS  Google Scholar 

  42. Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, et al. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog. 2009;5:e1000673.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

The authors thank Ms. Ana Serban, Ms. Julia Becker, and Mr. Frederic Letessier for D13 and D18 antibodies; Mr. Phillip Benner and the staff of the Hunter’s Point animal facility for expert animal studies; Dr. Sina Ghaemmaghami for many helpful discussions; and Ms. Hang Nguyen for editorial assistance. This work was supported by grants from the National Institutes of Health (AG002132, AG010770, AG031220, and AG021601) as well as by gifts from the Sherman Fairchild Foundation, Rainwater Charitable Foundation, Lincy Foundation, Fight for Mike Homer Program, and Robert Galvin. MPJ is a consultant to Schrodinger LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley B. Prusiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silber, B.M., Rao, S., Fife, K.L. et al. Pharmacokinetics and Metabolism of 2-Aminothiazoles with Antiprion Activity in Mice. Pharm Res 30, 932–950 (2013). https://doi.org/10.1007/s11095-012-0912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0912-4

KEY WORDS

Navigation