Skip to main content

Advertisement

Log in

Protected Graft Copolymer (PGC) Basal Formulation of Insulin as Potentially Safer Alternative to Lantus® (Insulin-Glargine): A Streptozotocin-Induced, Diabetic Sprague Dawley Rats Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a long-acting formulation of native human insulin with a similar pharmacodynamics (PD) profile as the insulin analogue insulin glargine (Lantus®, Sanofi-Aventis) with the expectation of retaining native human insulin’s superior safety profile as insulin glargine is able to activate the insulin-like growth factor 1 (IGF-1) receptor and is linked to a number of malignancies at a higher rate than regular human insulin.

Methods

Development of protected graft copolymer (PGC) excipients that bind native human insulin non-covalently and testing blood glucose control obtained with these formulations in streptozotocin-induced diabetic Sprague Dawley rats compared to equally dosed insulin glargine.

Results

PGC-formulations of native human insulin are able to control blood glucose to the same extent and for the same amount of time after s.c. injection as the insulin analogue insulin glargine. No biochemical changes were made to the insulin that would change receptor binding and activation with their possible negative effects on the safety of the insulin.

Conclusion

Formulation with the PGC excipient offers a viable alternative to biochemically changing insulin or other receptor binding peptides to improve PD properties.

Blood glucose development in STZ-diabetic Sprague Dawley rats after s.c. injection of 1 mg/kg regular human insulin formulated with formulations 605c, 421a, and 421b, or an equivalent dose of insulin glargine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BG:

blood glucose

NPH:

Neutral Protamine Hagedorn insulin

PGC:

Protected graft copolymer

STZ:

streptozotocin

References

  1. Bolli GB, et al. Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia. 1999;42(10):1151–67.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell RK, et al. Insulin glargine. Clin Ther. 2001;23(12):1938–57. discussion 1923.

    Article  PubMed  CAS  Google Scholar 

  3. Heise T, Heinemann L. Rapid and long-acting analogues as an approach to improve insulin therapy: an evidence-based medicine assessment. Curr Pharm Des. 2001;7(14):1303–25.

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.

    Article  PubMed  CAS  Google Scholar 

  5. McKeage K, Goa KL. Insulin glargine: a review of its therapeutic use as a long-acting agent for the management of type 1 and 2 diabetes mellitus. Drugs. 2001;61(11):1599–624.

    Article  PubMed  CAS  Google Scholar 

  6. Porcellati F, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care. 2007;30(10):2447–52.

    Article  PubMed  CAS  Google Scholar 

  7. Kurtzhals P, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000;49(6):999–1005.

    Article  PubMed  CAS  Google Scholar 

  8. Le Roith D. Insulin glargine and receptor-mediated signalling: clinical implications in treating type 2 diabetes. Diabetes Metab Res Rev. 2007;23(8):593–9.

    Article  PubMed  Google Scholar 

  9. Staiger K, et al. Comparison of the mitogenic potency of regular human insulin and its analogue glargine in normal and transformed human breast epithelial cells. Horm Metab Res. 2007;39(1):65–7.

    Article  PubMed  CAS  Google Scholar 

  10. Liefvendahl E, Arnqvist HJ. Mitogenic effect of the insulin analogue glargine in malignant cells in comparison with insulin and IGF-I. Horm Metab Res. 2008;40(6):369–74.

    Article  PubMed  CAS  Google Scholar 

  11. Mayer D, Shukla A, Enzmann H. Proliferative effects of insulin analogues on mammary epithelial cells. Arch Physiol Biochem. 2008;114(1):38–44.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein D, et al. Insulin analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev. 2009;25(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bloomgarden Z, Handelsman Y. Cancer mortality and insulin glargine. J Diabetes. 2009;1(3):131–3.

    Article  PubMed  Google Scholar 

  14. Colhoun HM. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia. 2009;52(9):1755–65.

    Article  PubMed  CAS  Google Scholar 

  15. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77.

    Article  PubMed  CAS  Google Scholar 

  16. Dejgaard A, et al. No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis. Diabetologia. 2009;52(12):2507–12.

    Article  PubMed  CAS  Google Scholar 

  17. Gale EA. Insulin glargine and cancer: another side to the story? Lancet. 2009;374(9689):521.

    Article  PubMed  Google Scholar 

  18. Garg SK, Hirsch IB, Skyler JS. Insulin glargine and cancer–an unsubstantiated allegation. Diabetes Technol Ther. 2009;11(8):473–6.

    Article  PubMed  CAS  Google Scholar 

  19. Hemkens LG, et al. Insulin glargine and cancer. Lancet. 2009;374(9703):1743–4. author reply 1744.

    Article  PubMed  Google Scholar 

  20. Hemkens LG, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia. 2009;52(9):1732–44.

    Article  PubMed  CAS  Google Scholar 

  21. Home PD, Lagarenne P. Combined randomised controlled trial experience of malignancies in studies using insulin glargine. Diabetologia. 2009;52(12):2499–506.

    Article  PubMed  CAS  Google Scholar 

  22. Idris I. Observational registry database studies link insulin glargine with cancer risk. Diabetes Obes Metab. 2009;11(9):910–2.

    Article  PubMed  Google Scholar 

  23. Jonasson JM, et al. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia. 2009;52(9):1745–54.

    Article  PubMed  CAS  Google Scholar 

  24. Pocock SJ, Smeeth L. Insulin glargine and malignancy: an unwarranted alarm. Lancet. 2009;374(9689):511–3.

    Article  PubMed  Google Scholar 

  25. Rosenstock J, et al. Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: findings from a 5 year randomised, open-label study. Diabetologia. 2009;52(9):1971–3.

    Article  PubMed  CAS  Google Scholar 

  26. Dawson LK, Hamilton LA. Risk of cancer in patients receiving insulin glargine. Am J Health Syst Pharm. 2010;67(23):2025–31.

    Article  PubMed  CAS  Google Scholar 

  27. Hernandez-Diaz S, Adami HO. Diabetes therapy and cancer risk: causal effects and other plausible explanations. Diabetologia. 2010;53(5):802–8.

    Article  PubMed  CAS  Google Scholar 

  28. Nagel JM, et al. Insulin resistance and increased risk for malignant neoplasms: confounding of the data on insulin glargine. Diabetologia. 2010;53(1):206–8.

    Article  PubMed  CAS  Google Scholar 

  29. Bogdanov Jr AA, et al. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology. 1993;187(3):701–6.

    PubMed  CAS  Google Scholar 

  30. Habeeb AFSA. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14(3):328–36.

    Article  PubMed  CAS  Google Scholar 

  31. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.

    Article  PubMed  CAS  Google Scholar 

  32. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.

    Article  PubMed  CAS  Google Scholar 

  33. Bolli GB, Owens DR. Insulin glargine. Lancet. 2000;356(9228):443–5.

    Article  PubMed  CAS  Google Scholar 

  34. Gillies PS, Figgitt DP, Lamb HM. Insulin glargine. Drugs. 2000;59(2):253–60. discussion 261-2.

    Article  PubMed  CAS  Google Scholar 

  35. Levien TL, et al. Insulin glargine: a new basal insulin. Ann Pharmacother. 2002;36(6):1019–27.

    Article  PubMed  CAS  Google Scholar 

  36. Reinhart L, Panning CA. Insulin glargine: a new long-acting insulin product. Am J Health Syst Pharm. 2002;59(7):643–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements & Disclosures

The work described in this publication has been supported by the NIH/NIDDK SBIR grant 5R44 DK069727-04 and 3R44DK069727-04S1. We also thank Ms. Cynthia C. Jones for expert help in editing and proof reading the manuscript.

Sandra Reichstetter, Man Shun Lai, Akiko Nishimoto-Ashfield, Gerardo Castillo, and Elijah Bolotin are paid employees and stock option holders of PharmaIN Corporation. Alexei Bogdanov is a shareholder of PharmaIN Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Reichstetter or Elijah M. Bolotin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichstetter, S., Castillo, G.M., Lai, M. et al. Protected Graft Copolymer (PGC) Basal Formulation of Insulin as Potentially Safer Alternative to Lantus® (Insulin-Glargine): A Streptozotocin-Induced, Diabetic Sprague Dawley Rats Study. Pharm Res 29, 1033–1039 (2012). https://doi.org/10.1007/s11095-011-0646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0646-8

KEY WORDS

Navigation