Skip to main content

Advertisement

Log in

Actively Targeted Low-Dose Camptothecin as a Safe, Long-Acting, Disease-Modifying Nanomedicine for Rheumatoid Arthritis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Camptothecin (CPT), a potent topoisomerase I inhibitor, was originally discovered as an anticancer agent to induce programmed cell death of cancer cells. Recent evidence suggests that, similar to cancer, alterations in apoptosis and over-proliferation of key effector cells in the arthritic joint result in rheumatoid arthritis (RA) pathogenesis. Initial in vitro studies have suggested that camptothecin inhibits synoviocyte proliferation, matrix metalloproteinases expression in chrondrocytes and angiogenesis. This study is one of the first to test, in vivo, RA as a new indication for CPT.

Methods

To circumvent insolubility, instability and toxicity of CPT, we used biocompatible, biodegradable and targeted sterically stabilized micelles (SSM) as nanocarriers for CPT (CPT-SSM). We also surface-modified CPT-SSM with vasoactive intestinal peptide (VIP) for active targeting. We then determined whether this nanomedicine abrogated collagen-induced arthritis (CIA) in mice.

Results

Based on our findings, this is the first study to report that CPT was found to be efficacious against CIA at concentrations significantly lower than usual anti-cancer dose. Furthermore, a single subcutaneous injection of CPT-SSM-VIP (0.1 mg/kg) administered to CIA mice mitigated joint inflammation for at least 32 days thereafter without systemic toxicity. CPT alone needed at least 10-fold higher dose to achieve the same effect, albeit with some vacuolization in liver histology.

Conclusion

We propose that CPT-SSM-VIP is a promising targeted nanomedicine and should be further developed as a safe, long-acting, disease-modifying pharmaceutical product for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CIA:

collagen-induced arthritis

CMC:

critical micelle concentration

CPT:

camptothecin

CPT-SSM:

sterically stabilized micelles loaded with camptothecin

CPT-SSM-VIP:

sterically stabilized micelles loaded with camptothecin and surface-modified with vasoactive intestinal peptide

MTX:

methotrexate

PEG:

polyethylene glycol

RA:

rheumatoid arthritis

SSM:

sterically stabilized micelles

VIP:

vasoactive intestinal peptide

REFERENCES

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.

    Article  PubMed  CAS  Google Scholar 

  2. Editorial: Painful lessons. Nat Struct Mol Biol. 2005;12:205.

  3. Borchers AT, Keen CL, Cheema GS, Gershwin ME. The use of methotrexate in rheumatoid arthritis. Semin Arthritis Rheum. 2004;34:465–83.

    Article  PubMed  CAS  Google Scholar 

  4. Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res & Therapy. 2009;11:S1.

    Article  Google Scholar 

  5. O’Dell JR. Therapeutic strategies for rheumatoid arthritis. N Engl J Med. 2004;350:2591–602.

    Article  PubMed  Google Scholar 

  6. Liu H, Pope RM. Apoptosis in rheumatoid arthritis: friend or foe. Rheum Dis Clin North Am. 2004;30:603–25. x.

    Article  PubMed  Google Scholar 

  7. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073.

    Article  PubMed  CAS  Google Scholar 

  8. Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ. A model for the mechanism of human topoisomerase I. Science. 1998;279:1534–41.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson JK, Higo T, Hunter WL, Burt HM. Topoisomerase inhibitors as anti-arthritic agents. Inflamm Res. 2008;57:126–34.

    Article  PubMed  CAS  Google Scholar 

  10. Schaeppi U, Fleischman RW, Cooney DA. Toxicity of camptothecin (NSC-100880). Cancer Chemother Rep. 3 1974;5:25–36.

    Google Scholar 

  11. Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep. 1972;56:95–101.

    PubMed  CAS  Google Scholar 

  12. Koo O, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine. 2005;1:77–84.

    PubMed  CAS  Google Scholar 

  13. Taratula O et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release. 2009;140:284–93.

    Article  PubMed  CAS  Google Scholar 

  14. Lu J, Kasama T, Kobayashi K, Yoda Y, Shiozawa F, Hanyuda M, et al. Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J Immunol. 2000;164:5922–7.

    PubMed  CAS  Google Scholar 

  15. Dagar S, Krishnadas A, Rubinstein I, Blend MJ, Onyuksel H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release. 2003;91:123–33.

    Article  PubMed  CAS  Google Scholar 

  16. Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal Peptide in immunomodulation. Pharmacol Rev. 2004;56:249–90.

    Article  PubMed  CAS  Google Scholar 

  17. Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med. 2002;80:16–24.

    Article  PubMed  CAS  Google Scholar 

  18. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature. 1980;283:666–8.

    Article  PubMed  CAS  Google Scholar 

  19. Caiolfa VR et al. Polymer-bound camptothecin: initial biodistribution and antitumour activity studies. J Control Release. 2000;65:105–19.

    Article  PubMed  CAS  Google Scholar 

  20. Delgado M et al. Genetic association of vasoactive intestinal peptide receptor with rheumatoid arthritis: altered expression and signal in immune cells. Arthritis Rheum. 2008;58:1010–9.

    Article  PubMed  CAS  Google Scholar 

  21. Reiff A, Zastrow M, Sun BC, Takei S, Mitsuhada H, Bernstein B, et al. Treatment of collagen induced arthritis in DBA/1 mice with L-asparaginase. Clin Exp Rheumatol. 2001;19:639–46.

    PubMed  CAS  Google Scholar 

  22. Neurath MF et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin Exp Immunol. 1999;115:42–55.

    Article  PubMed  CAS  Google Scholar 

  23. Holmdahl R, Bockermann R, Backlund J, Yamada H. The molecular pathogenesis of collagen-induced arthritis in mice—a model for rheumatoid arthritis. Ageing Res Rev. 2002;1:135–47.

    Article  PubMed  CAS  Google Scholar 

  24. Wolford ST et al. Reference range data base for serum chemistry and hematology values in laboratory animals. J Toxicol Environ Health. 1986;18:161–88.

    Article  PubMed  CAS  Google Scholar 

  25. Schnell MA, Hardy C, Hawley M, Propert KJ, Wilson JM. Effect of blood collection technique in mice on clinical pathology parameters. Hum Gene Ther. 2002;13:155–61.

    Article  PubMed  CAS  Google Scholar 

  26. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of pegylated phospholipid micelles for improved drug solubilization: effects of peg chain length and PC incorporation. J Pharm Sci. 2004;93:2476–87.

    Article  PubMed  CAS  Google Scholar 

  27. Burke TG, Staubus AE, Mishra AK. Liposomal stabilization of camptothecin’s lactone ring. Journal of American Chemical Society. 1992;114:8318–9.

    Article  CAS  Google Scholar 

  28. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1:193–212.

    PubMed  CAS  Google Scholar 

  29. Daoud SS, Fetouh MI, Giovanella BC. Antitumor effect of liposome-incorporated camptothecin in human malignant xenografts. Anticancer Drugs. 1995;6:83–93.

    Article  PubMed  CAS  Google Scholar 

  30. Rowinsky EK et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol. 2003;21:148–57.

    Article  PubMed  CAS  Google Scholar 

  31. Scott LC et al. A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma. Cancer Chemother Pharmacol. 2009;63:363–70.

    Article  PubMed  CAS  Google Scholar 

  32. Working PK, Dayan AD. Pharmacological-toxicological expert report. CAELYX. (Stealth liposomal doxorubicin HCl). Hum Exp Toxicol. 1996;15:751–85.

    PubMed  CAS  Google Scholar 

  33. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-kappa B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J Biol Chem. 2001;276:369–80.

    Article  PubMed  CAS  Google Scholar 

  34. Turk MJ et al. Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum. 2002;46:1947–55.

    Article  PubMed  Google Scholar 

  35. Nagayoshi R et al. Effectiveness of anti-folate receptor beta antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid arthritis synovial macrophages. Arthritis Rheum. 2005;52:2666–75.

    Article  PubMed  CAS  Google Scholar 

  36. Rubinstein I, Patel M, Ikezaki H, Dagar S, Onyuksel H. Conformation and vasoreactivity of VIP in phospholipids: effects of calmodulin. Peptides. 1999;20:1497–501.

    Article  PubMed  CAS  Google Scholar 

  37. Onyuksel H, Ikezaki H, Patel M, Gao XP, Rubinstein I. A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm Res. 1999;16:155–60.

    Article  PubMed  CAS  Google Scholar 

  38. Fahrenkrug J, Hannibal J, Tams J, Georg B. Immunohistochemical localization of the VIP1 receptor (VPAC1R) in rat cerebral blood vessels: relation to PACAP and VIP containing nerves. J Cereb Blood Flow Metab. 2000;20:1205–14.

    Article  PubMed  CAS  Google Scholar 

  39. Rubinstein I, Soos I, Onyuksel H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem Biol Interact. 2007;171:190–4.

    Article  PubMed  Google Scholar 

  40. Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 1998;279:1504–13.

    Article  PubMed  CAS  Google Scholar 

  41. Ferraro C, Quemeneur L, Fournel S, Prigent AF, Revillard JP, Bonnefoy-Berard N. The topoisomerase inhibitors camptothecin and etoposide induce a CD95-independent apoptosis of activated peripheral lymphocytes. Cell Death Differ. 2000;7:197–206.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank J. Artwohl for his advice on the CIA mouse model and for analyzing our histology and radiographic slides in a blinded fashion, T. Valli and the veterinarian pathology laboratory at University of Illinois at Urbana Champion for preparing the immunohistochemical slides and analyzing them in a blinded fashion, R. Gemeinhart’s laboratory for use of microscope equipment, H. Radloff at the Radiology Department at UIC Hospital for help in taking the radiographs. This study was supported, in part, by DOD grant BCRP, #DAMD 17-02-1-0415, VA Merit Review and NIH grants R01 AG024026, R01 HL72323 and C06RR15482. This investigation was conducted in a facility constructed with support from grant C06RR15482 from the NIH National Center for Research Resources. O.M.K. was a recipient of the UIC University Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Önyüksel.

Additional information

All research was conducted by author at University of Illinois at Chicago

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, O.M.Y., Rubinstein, I. & Önyüksel, H. Actively Targeted Low-Dose Camptothecin as a Safe, Long-Acting, Disease-Modifying Nanomedicine for Rheumatoid Arthritis. Pharm Res 28, 776–787 (2011). https://doi.org/10.1007/s11095-010-0330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0330-4

KEY WORDS

Navigation