Skip to main content

Advertisement

Log in

Palmitoyl Ascorbate-Loaded Polymeric Micelles: Cancer Cell Targeting and Cytotoxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the potential of palmitoyl ascorbate (PA)-loaded micelles for ascorbate-mediated cancer cell targeting and cytotoxicity.

Methods

PA was incorporated in polyethylene glycol-phosphatidyl ethanolamine micelles at varying concentrations. The formulations were evaluated for PA content by RP-HPLC. A stable formulation was selected based on size and zeta potential measurements. A co-culture of cancer cells and GFP-expressing non-cancer cells was used to determine the specificity of PA micelle binding. In vitro cytotoxicity of the micellar formulations towards various cancer cell lines was investigated using a cell viability assay. To elucidate the mechanism of action of cell death in vitro, the effect of various H2O2 scavengers and metal chelators on PA-mediated cytotoxicity was studied. The in vivo anti-cancer activity of PA micelles was studied in female Balb/c mice bearing a murine mammary carcinoma (4T1 cells).

Results

PA micelles associated preferentially with various cancer cells compared to non-cancer cells in co-culture. PA micelles exhibited anti-cancer activity in cancer cell lines both in vitro and in vivo. The mechanism of cell death was due primarily to generation of reactive oxygen species (ROS).

Conclusions

The anti-cancer activity of PA micelles associated with its enhanced cancer cell binding and subsequent generation of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A. 1976;73:3685–9.

    Article  CAS  PubMed  Google Scholar 

  2. Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687–90.

    Article  CAS  PubMed  Google Scholar 

  3. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137–41.

    Article  CAS  PubMed  Google Scholar 

  4. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.

    CAS  PubMed  Google Scholar 

  5. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104:8749–54.

    Article  CAS  PubMed  Google Scholar 

  7. Agus DB, Vera JC, Golde DW. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Cancer Res. 1999;59:4555–8.

    CAS  PubMed  Google Scholar 

  8. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest. 1997;100:2842–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem. 2000;275:28246–53.

    CAS  PubMed  Google Scholar 

  10. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272:18982–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kurbacher CM, Wagner U, Kolster B, Andreotti PE, Krebs D, Bruckner HW. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 1996;103:183–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chiang CD, Song EJ, Yang VC, Chao CC. Ascorbic acid increases drug accumulation and reverses vincristine resistance of human non-small-cell lung-cancer cells. Biochem J. 1994;301(Pt 3):759–64.

    CAS  PubMed  Google Scholar 

  13. Evens AM, Lecane P, Magda D, Prachand S, Singhal S, Nelson J, et al. Motexafin gadolinium generates reactive oxygen species and induces apoptosis in sensitive and highly resistant multiple myeloma cells. Blood. 2005;105:1265–73.

    Article  CAS  PubMed  Google Scholar 

  14. Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, Neil J, Reis I, Kharfan-Dabaja M, et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res. 2002;8:3658–68.

    CAS  PubMed  Google Scholar 

  15. Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47:32–40.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenblat G, Graham MF, Jonas A, Tarshis M, Schubert SY, Tabak M, et al. Effect of ascorbic acid and its hydrophobic derivative palmitoyl ascorbate on the redox state of primary human fibroblasts. J Med Food. 2001;4:107–15.

    Article  CAS  PubMed  Google Scholar 

  17. Palma S, Manzo RH, Allemandi D, Fratoni L, Lo Nostro P. Solubilization of hydrophobic drugs in octanoyl-6-O-ascorbic acid micellar dispersions. J Pharm Sci. 2002;91:1810–6.

    Article  CAS  PubMed  Google Scholar 

  18. Gopinath D, Ravi D, Rao BR, Apte SS, Renuka D, Rambhau D. Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int J Pharm. 2004;271:95–113.

    Article  CAS  PubMed  Google Scholar 

  19. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  20. D’Souza GG, Wang T, Rockwell K, Torchilin VP. Surface modification of pharmaceutical nanocarriers with ascorbate residues improves their tumor-cell association and killing and the cytotoxic action of encapsulated paclitaxel in vitro. Pharm Res. 2008;25:2567–72.

    Article  PubMed  Google Scholar 

  21. Clement MV, Ramalingam J, Long LH, Halliwell B. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Signal. 2001;3:157–63.

    Article  CAS  PubMed  Google Scholar 

  22. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.

    Article  CAS  PubMed  Google Scholar 

  23. Torchilin VP. Lipid-core micelles for targeted drug delivery. Curr Drug Deliv. 2005;2:319–27.

    Article  CAS  PubMed  Google Scholar 

  24. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56:1273–89.

    Article  CAS  PubMed  Google Scholar 

  25. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.

    Article  CAS  PubMed  Google Scholar 

  26. Rose RC, Bode AM. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 1993;7:1135–42.

    CAS  PubMed  Google Scholar 

  27. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 1996;93:3704–9.

    Article  CAS  PubMed  Google Scholar 

  28. Belin S, Kaya F, Duisit G, Giacometti S, Ciccolini J, Fontes M. Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS ONE. 2009;4:e4409.

    Article  PubMed  Google Scholar 

  29. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105:11105–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP. PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target. 2003;11:87–92.

    Article  CAS  PubMed  Google Scholar 

  31. Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethylene glycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm. 2005;306:142–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315:148–57.

    Article  CAS  PubMed  Google Scholar 

  33. Roby A, Erdogan S, Torchilin VP. Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm. 2006;62:235–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res. 2002;19:1424–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kristl J, Volk B, Gasperlin M, Sentjurc M, Jurkovic P. Effect of colloidal carriers on ascorbyl palmitate stability. Eur J Pharm Sci. 2003;19:181–9.

    Article  CAS  PubMed  Google Scholar 

  36. Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev. 2005;57:95–109.

    Article  CAS  PubMed  Google Scholar 

  37. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002;9:1031–44.

    Article  CAS  PubMed  Google Scholar 

  38. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275:24273–8.

    Article  CAS  PubMed  Google Scholar 

  39. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65:948–56.

    CAS  PubMed  Google Scholar 

  40. Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol. 1997;12:525–35.

    CAS  PubMed  Google Scholar 

  41. Yang J, Lam EW, Hammad HM, Oberley TD, Oberley LW. Antioxidant enzyme levels in oral squamous cell carcinoma and normal human oral epithelium. J Oral Pathol Med. 2002;31:71–7.

    Article  CAS  PubMed  Google Scholar 

  42. Verrax J, Cadrobbi J, Marques C, Taper H, Habraken Y, Piette J, et al. Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis. 2004;9:223–33.

    Article  CAS  PubMed  Google Scholar 

  43. Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–24.

    CAS  PubMed  Google Scholar 

  44. Frei B, Lawson S. Vitamin C and cancer revisited. Proc Natl Acad Sci U S A. 2008;105:11037–8.

    Article  CAS  PubMed  Google Scholar 

  45. Duarte TL, Almeida GM, Jones GD. Investigation of the role of extracellular H2O2 and transition metal ions in the genotoxic action of ascorbic acid in cell culture models. Toxicol Lett. 2007;170:57–65.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This research is based on a hypothesis originating with a proposal by Anthony R. Manganaro. Funding was provided by Anthony R. Manganaro. The authors gratefully acknowledge W.C. Hartner for his help in preparation of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawant, R.R., Vaze, O., D’Souza, G.G.M. et al. Palmitoyl Ascorbate-Loaded Polymeric Micelles: Cancer Cell Targeting and Cytotoxicity. Pharm Res 28, 301–308 (2011). https://doi.org/10.1007/s11095-010-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0242-3

KEY WORDS

Navigation