Skip to main content
Log in

Phase Transitions in Frozen Systems and During Freeze–Drying: Quantification Using Synchrotron X-Ray Diffractometry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

(1) To develop a synchrotron X-ray diffraction (SXRD) method to monitor phase transitions during the entire freeze–drying cycle. Aqueous sodium phosphate buffered glycine solutions with initial glycine to buffer molar ratios of 1:3 (17:50 mM), 1:1 (50 mM) and 3:1 were utilized as model systems. (2) To investigate the effect of initial solute concentration on the crystallization of glycine and phosphate buffer salt during lyophilization.

Methods

Phosphate buffered glycine solutions were placed in a custom-designed sample cell for freeze–drying. The sample cell, covered with a stainless steel dome with a beryllium window, was placed on a stage capable of controlled cooling and vacuum drying. The samples were cooled to −50°C and annealed at −20°C. They underwent primary drying at −25°C under vacuum until ice sublimation was complete and secondary drying from 0 to 25°C. At different stages of the freeze–drying cycle, the samples were periodically exposed to synchrotron X-ray radiation. An image plate detector was used to obtain time-resolved two-dimensional SXRD patterns. The ice, β-glycine and DHPD phases were identified based on their unique X-ray peaks.

Results

When the solutions were cooled and annealed, ice formation was followed by crystallization of disodium hydrogen phosphate dodecahydrate (DHPD). In the primary drying stage, a significant increase in DHPD crystallization followed by incomplete dehydration to amorphous disodium hydrogen phosphate was evident. Complete dehydration of DHPD occurred during secondary drying. Glycine crystallization was inhibited throughout freeze–drying when the initial buffer concentration (1:3 glycine to buffer) was higher than that of glycine.

Conclusion

A high-intensity X-ray diffraction method was developed to monitor the phase transitions during the entire freeze–drying cycle. The high sensitivity of SXRD allowed us to monitor all the crystalline phases simultaneously. While DHPD crystallizes in frozen solution, it dehydrates incompletely during primary drying and completely during secondary drying. The impact of initial solute concentration on the phase composition during the entire freeze–drying cycle was quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. J. Pikal. Freeze Drying. In J. Swarbrickand, and J. C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, Marcel Dekker, , New York, 2002, pp. 1299–1326.

    Google Scholar 

  2. J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: some practical advice. Pharm. Res. 14:969–975 (1997). doi:10.1023/A:1012180707283.

    Article  PubMed  CAS  Google Scholar 

  3. X. Tang, and M. J. Pikal. Design of freeze–drying processes for pharmaceuticals: practical advice. Pharm. Res. 21:191–200 (2004). doi:10.1023/B:PHAM.0000016234.73023.75.

    Article  PubMed  CAS  Google Scholar 

  4. L. A. Trissel. Handbook of injectable drugs. ASHP, Bethesda, MD, 1994.

    Google Scholar 

  5. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Raffinose crystallization during freeze–drying and its impact on recovery of protein activity. Pharm. Res. 22:303–309 (2005). doi:10.1007/s11095-004-1198-y.

    Article  PubMed  CAS  Google Scholar 

  6. X. Liao, R. Krishnamurthy, and R. Suryanarayanan. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze–drying. Pharm. Res. 22:1978–1985 (2005). doi:10.1007/s11095-005-7625-x.

    Article  PubMed  CAS  Google Scholar 

  7. K. A. Pikal-Cleland, J. L. Cleland, T. J. Anchordoquy, and J. F. Carpenter. Effect of glycine on pH changes and protein stability during freeze–thawing in phosphate buffer systems. J. Pharm. Sci. 91:1969–1979 (2002). doi:10.1002/jps.10184.

    Article  PubMed  CAS  Google Scholar 

  8. T. W. Randolph. Phase separation of excipients during lyophilization: effects on protein stability. J. Pharm. Sci. 86:1198–1203 (1997). doi:10.1021/js970135b.

    Article  PubMed  CAS  Google Scholar 

  9. E. Y. Shalaev. The impact of buffer on processing and stability of freeze–dried dosage forms, part 1: solution freezing behavior. Am. Pharm. Rev. 8:80–87 (2005).

    CAS  Google Scholar 

  10. E. Y. Shalaev, F. Franks, and P. Echlin. Crystalline and amorphous phases in the ternary system water-sucrose-sodium chloride. J. Phy. Chem. 100:1144–1152 (1996). doi:10.1021/jp951052r.

    Article  CAS  Google Scholar 

  11. R. K. Cavatur, and R. Suryanarayanan. Characterization of frozen aqueous solutions by low temperature X-ray powder diffractometry. Pharm. Res. 15:194–199 (1998). doi:10.1023/A:1011950131312.

    Article  PubMed  CAS  Google Scholar 

  12. R. K. Cavatur, and R. Suryanarayanan. Characterization of phase transitions during freeze–drying by in situ X-ray powder diffractometry. Pharm. Dev. Technol. 3:579–586 (1998). doi:10.3109/10837459809028642.

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Searles, J. F. Carpenter, and T. W. Randolph. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg’ in pharmaceutical lyophilization. J. Pharm. Sci. 90:872–887 (2001). doi:10.1002/jps.1040.

    Article  PubMed  CAS  Google Scholar 

  14. A. Pyne, K. Chatterjee, and R. Suryanarayanan. Solute crystallization in mannitol-glycine systems - implications on protein stabilization in freeze–dried formulations. J. Pharm. Sci. 92:2272–2283 (2003). doi:10.1002/jps.10487.

    Article  PubMed  CAS  Google Scholar 

  15. G. Gomez. Crystallization related pH changes during freezing of sodium phosphate buffer solutions. Ph.D. dissertation, Department of Pharmaceutics, University of Michigan, Ann Arbor, 1995, p. 188.

  16. G. Gomez, M. J. Pikal, and N. Rodriguez-Hornedo. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharm. Res. 18:90–97 (2001). doi:10.1023/A:1011082911917.

    Article  PubMed  CAS  Google Scholar 

  17. L. van den Berg. pH changes in buffers and foods during freezing and subsequent storage. Cryobiol. 3:236–242 (1966). doi:10.1016/S0011-2240(66)80017-2.

    Article  Google Scholar 

  18. L. van den Berg, and D. Rose. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4–Na2HPO4–H2O. Arch. Biochem. Biophys. 81:319–329 (1959). doi:10.1016/0003-9861(59)90209-7.

    Article  Google Scholar 

  19. D. B. Varshney, S. Kumar, E. Y. Shalaev, S.-W. Kang, L. A. Gatlin, and R. Suryanarayanan. Solute crystallization in frozen systems-use of synchrotron radiation to improve sensitivity. Pharm. Res. 23:2368–2374 (2006). doi:10.1007/s11095-006-9051-0.

    Article  PubMed  CAS  Google Scholar 

  20. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery.. J. Pharm. Sci. 94:809–820 (2005). doi:10.1002/jps.20304.

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Akers, N. Milton, S. R. Byrn, and S. L. Nail. Glycine crystallization during freezing: the effect of salt form, pH, and ionic strength. Pharm. Res. 12:1457–1461 (1995). doi:10.1023/A:1016223101872.

    Article  PubMed  CAS  Google Scholar 

  22. S. Chongprasert, S. A. Knopp, and S. L. Nail. Characterization of frozen solutions of glycine. J. Pharm. Sci. 90:1720–1728 (2001). doi:10.1002/jps.1121.

    Article  PubMed  CAS  Google Scholar 

  23. C. S. Towler, R. J. Davey, R. W. Lancaster, and C. J. Price. Impact of molecular speciation on crystal nucleation in polymorphic systems: The conundrum of γ-glycine and molecular “self poisoning". J. Am. Chem. Soc. 126:13347–13353 (2004). doi:10.1021/ja047507k.

    Article  PubMed  CAS  Google Scholar 

  24. D. B. Varshney, S. Kumar, E. Y. Shalaev, P. Sundaramurthi, S.-W. Kang, L. A. Gatlin, and R. Suryanarayanan. Glycine crystallization in frozen and freeze–dried systems: effect of pH and buffer concentration. Pharm. Res. 24:593–604 (2007). doi:10.1007/s11095-006-9178-z.

    Article  PubMed  CAS  Google Scholar 

  25. L. Yu, and K. Ng. Glycine crystallization during spray drying: the pH effect on salt and polymorphic forms. J. Pharm. Sci. 91:2367–2375 (2002). doi:10.1002/jps.10225.

    Article  PubMed  CAS  Google Scholar 

  26. E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and E.S. Shutova. Polymorphism of glycine - thermodynamic aspects. Part 1. relative stability of polymorphs. J. Therm. Anal. Cal. 73:409–418 (2003). doi:10.1023/A:1025405508035.

    Article  CAS  Google Scholar 

  27. E. S. Ferrari, R. J. Davey, W. I. Cross, A. L. Gillon, and C. S. Towler. Crystallization in polymorphic systems: the solution-mediated transformation of β to α glycine. Cryst. Growth Des. 3:53–60 (2003). doi:10.1021/cg025561b.

    Article  CAS  Google Scholar 

  28. G. L. Perlovich, L. K. Hansen, and A. Bauer-Brandl. The polymorphism of glycine—thermochemical and structural aspects. J. Therm. Anal. Cal. 66:699–715 (2001). doi:10.1023/A:1013179702730.

    Article  CAS  Google Scholar 

  29. H. Sakai, H. Hosogai, T. Kawakita, K. Onuma, and K. Tsukamoto. Transformation of α-glycine to γ-glycine. J. Cryst. Growth. 116:421–426 (1992). doi:10.1016/0022-0248(92)90651-X.

    Article  CAS  Google Scholar 

  30. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J. Pharm. Sci. 94:798–808 (2005). doi:10.1002/jps.20303.

    Article  PubMed  CAS  Google Scholar 

  31. T. D. Davis, G. E. Peck, J. G. Stowell, K. R. Morris, and S. R. Byrn. Modelling and monitoring of polymorphic transformations during the drying phase of wet granulation. Pharm. Res. 21:860–866 (2004). doi:10.1023/B:PHAM.0000026440.00508.cf.

    Article  PubMed  CAS  Google Scholar 

  32. X. Li, and S. L. Nail. Kinetics of glycine crystallization during freezing of sucrose/glycine excipient systems. J. Pharm. Sci. 94:625–631 (2005). doi:10.1002/jps.20286.

    Article  PubMed  CAS  Google Scholar 

  33. Powder Diffraction File. hexagonal ice, card#00-042-1142; disodium hydrogen phosphate dodecahydrate, card#00-011-0657; α-glycine, card#00-032-1702; β-glycine, card#00-002-0171; γ-glycine, card#00-006-0230 International Centre for Diffraction Data, Newtown Square, PA (1996).

  34. A. Pyne, K. Chatterjee, and R. Suryanarayanan. Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying. J. Pharm. Sci. 20:802–803 (2003).

    CAS  Google Scholar 

  35. A. Pyne, and R. Suryanarayanan. Phase transitions of glycine in frozen aqueous solutions and during freeze–drying. Pharm. Res. 18:1448–1454 (2001). doi:10.1023/A:1012209007411.

    Article  PubMed  CAS  Google Scholar 

  36. I. Weissbuch, V. Y. Torbeev, L. Leiserowitz, and M. Lahav. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. 44:3226–3229 (2005). doi:10.1002/anie.200500164.

    Article  CAS  Google Scholar 

  37. E. Y. Shalaev, D. V. Malakhov, A. N. Kanev, V. I. Kosyakov, F. V. Tuzikov, N. A. Varaksin, and V.I. Vavilin. Study of the phase diagram water fraction of the system water-glycine-sucrose by DTA and X-ray diffraction methods. Thermochim. Acta. 196:213–220 (1992). doi:10.1016/0040-6031(92)85021-M.

    Article  CAS  Google Scholar 

  38. T. Suzuki, and F. Franks. Solid-liquid phase transitions and amorphous states in ternary sucrose–glycine–water systems. J. Chem. Soc. Farad. Trans. 89:3283–3288 (1993). doi:10.1039/ft9938903283.

    Article  CAS  Google Scholar 

  39. R. Govindarajan, K. Chatterjee, L. Gatlin, R. Suryanarayanan, and E. Y. Shalaev. Impact of freeze–drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems. J. Pharm. Sci. 95:1498–1510 (2006). doi:10.1002/jps.20620.

    Article  PubMed  CAS  Google Scholar 

  40. N. Blagden, R. J. Davey, M. Song, M. Quayle, S. Clark, D. Taylor, and A. Nield. A novel batch cooling crystallizer for in situ monitoring of solution crystallization using energy dispersive X-ray diffraction. Cryst. Growth Des. 3:197–201 (2003). doi:10.1021/cg020053n.

    Article  CAS  Google Scholar 

  41. C. Nunes. Use of high-intensity X-radiation in solid-state characterization of pharmaceuticals. Ph.D. dissertation, Department of Pharmaceutics, University of Minnesota, Minneapolis, 2005, p. 197.

  42. C. Nunes, A. Mahendrasingam, and R. Suryanarayanan. Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm. Res. 22:1942–1953 (2005). doi:10.1007/s11095-005-7626-9.

    Article  PubMed  CAS  Google Scholar 

  43. A. P. Hammersley, M. Hanfland, A. N. Fitch, and D. Hausermann. Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press. Res. 14:235–248 (1996). doi:10.1080/08957959608201408.

    Article  Google Scholar 

  44. A. P. Hammersley. ESRF internal report, ESRF97HA02T. “Fit2D: an introduction and overview”. (1997).

Download references

Acknowledgement

The authors thank Dr. Douglas Robinson for the beamline management and support during the experiments. This work was supported, in part, by a Research Challenge award from the Ohio Board of Regents. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng- 38. The Midwest Universities Collaborative Access Team (MUCAT) sector at the APS is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, through the Ames Laboratory under Contract No. W-7405-Eng-82. We thank Linda Sauer for her assistance in setting up the instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D.B., Sundaramurthi, P., Kumar, S. et al. Phase Transitions in Frozen Systems and During Freeze–Drying: Quantification Using Synchrotron X-Ray Diffractometry. Pharm Res 26, 1596–1606 (2009). https://doi.org/10.1007/s11095-009-9868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9868-4

Key words

Navigation