Skip to main content
Log in

Drug Delivery Systems for Intraperitoneal Therapy

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Disorders associated with the peritoneal cavity include peritoneal adhesions and intraperitoneal (IP) malignancies. To prevent peritoneal adhesions, physical barrier devices are used to prevent organs from contacting other structures in the abdomen and forming adhesions, or pharmacological agents that interfere with adhesion formation are administered intraperitoneally. IP malignancies are other disorders confined to the peritoneal cavity, which are treated by combination of surgical removal and chemotherapy of the residual tumor. IP drug delivery helps in the regional therapy of these disorders by providing relatively high concentration and longer half-life of a drug in the peritoneal cavity. Various studies suggest that IP delivery of anti-neoplastic agents is a promising approach for malignancies in the peritoneal cavity compared to the systemic administration. However, IP drug delivery faces several challenges, such as premature clearance of a small molecular weight drug from the peritoneal cavity, lack of target specificity, and poor drug penetration into the target tissues. Previous studies have proposed the use of micro/nanoparticles and/or hydrogel-based systems for prolonging the drug residence time in the peritoneal cavity. This commentary discusses the currently used IP drug delivery systems either clinically or experimentally and the remaining challenges in IP drug delivery for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg. 2001;18:260–73.

    Article  PubMed  CAS  Google Scholar 

  2. Tingstedt B, Andersson E, Isaksson K, Andersson R. Clinical impact of abdominal adhesions: what is the magnitude of the problem? Scand J Gastroenterol. 2008;43:255–61.

    Article  PubMed  Google Scholar 

  3. Davies JM, O’Neil B. Peritoneal carcinomatosis of gastrointestinal origin: natural history and treatment options. Expert Opin Investig Drugs. 2009;18:913–9.

    Article  PubMed  CAS  Google Scholar 

  4. Sadeghi B, Arvieux C, Glehen O, Beaujard AC, Rivoire M, Baulieux J, et al. Peritoneal carcinomatosis from non-gynecologic malignancies. Cancer 2000;88:358–63.

    Article  PubMed  CAS  Google Scholar 

  5. Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Muller JM, et al. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS ONE. 2009;4:e5715.

    Article  PubMed  CAS  Google Scholar 

  6. Akahira JI, Yoshikawa H, Shimizu Y, Tsunematsu R, Hirakawa T, Kuramoto H, et al. Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecol Oncol. 2001;81:398–403.

    Article  PubMed  CAS  Google Scholar 

  7. Curtin JP, Malik R, Venkatraman ES, Barakat RR, Hoskins WJ. Stage IV ovarian cancer: impact of surgical debulking. Gynecol Oncol. 1997;64:9–12.

    Article  PubMed  CAS  Google Scholar 

  8. DiZerega GS. Use of adhesion prevention barriers in pelvic reconstructive and gynecologic surgery. In: diZerega GS, editor. Peritoneal surgery. New York: Springer; 2000.

    Google Scholar 

  9. Yeo Y, Kohane DS. Polymers in the prevention of peritoneal adhesions. Eur J Pharm Biopharm. 2008;68:57–66.

    Article  PubMed  CAS  Google Scholar 

  10. Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release. 2007;120:178–85.

    Article  PubMed  CAS  Google Scholar 

  11. Yeo Y, Bellas E, Highley CB, Langer R, Kohane DS. Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials 2007;28:3704–13.

    Article  PubMed  CAS  Google Scholar 

  12. Alberts DS, Liu PY, Hannigan EV, O’Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335:1950–5.

    Article  PubMed  CAS  Google Scholar 

  13. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334:1–6.

    Article  PubMed  CAS  Google Scholar 

  14. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21:3194–200.

    Article  PubMed  CAS  Google Scholar 

  15. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34–43.

    Article  PubMed  CAS  Google Scholar 

  16. Gadducci A, Carnino F, Chiara S, Brunetti I, Tanganelli L, Romanini A, et al. Intraperitoneal versus intravenous cisplatin in combination with intravenous cyclophosphamide and epidoxorubicin in optimally cytoreduced advanced epithelial ovarian cancer: a randomized trial of the Gruppo Oncologico Nord-Ovest. Gynecol Oncol. 2000;76:157–62.

    Article  PubMed  CAS  Google Scholar 

  17. Markman M, Bundy BN, Alberts DS, Fowler JM, Clark-Pearson DL, Carson LF, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19:1001–7.

    PubMed  CAS  Google Scholar 

  18. Polyzos A, Tsavaris N, Kosmas C, Giannikos L, Katsikas M, Kalahanis N, et al. A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology 1999;56:291–6.

    Article  PubMed  CAS  Google Scholar 

  19. Yen MS, Juang CM, Lai CR, Chao GC, Ng HT, Yuan CC. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. Int J Gynaecol Obstet. 2001;72:55–60.

    Article  PubMed  CAS  Google Scholar 

  20. Glockzin G, Schlitt HJ, Piso P. Peritoneal carcinomatosis: patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2009;7:5.

    Article  PubMed  Google Scholar 

  21. Gonzalez-Moreno S, Ortega-Perez G, Gonzalez-Bayon L. Indications and patient selection for cytoreductive surgery and perioperative intraperitoneal chemotherapy. J Surg Oncol. 2009;100:287–92.

    Article  PubMed  Google Scholar 

  22. Nissan A, Stojadinovic A, Garofalo A, Esquivel J, Piso P. Evidence-based medicine in the treatment of peritoneal carcinomatosis: past, present, and future. J Surg Oncol. 2009;100:335–44.

    Article  PubMed  CAS  Google Scholar 

  23. Dedrick RL, Myers CE, Bungay PM, DeVita Jr VT. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.

    PubMed  CAS  Google Scholar 

  24. Markman M. Intraperitoneal drug delivery of antineoplastics. Drugs 2001;61:1057–65.

    Article  PubMed  CAS  Google Scholar 

  25. Markman M, Rowinsky E, Hakes T, Reichman B, Jones W, Lewis Jr JL, et al. Phase I trial of intraperitoneal taxol: a Gynecoloic Oncology Group study. J Clin Oncol. 1992;10:1485–91.

    PubMed  CAS  Google Scholar 

  26. NCI clinical announcement for Intraperitoneal chemotherapy for ovarian cancer http://ctep.cancer.gov/highlights/docs/clin_annc_010506.pdf.

  27. Poveda AA, Salazar RR, del Campo JJM, Mendiola CC, Cassinello JJ, Ojeda BB, et al. Update in the management of ovarian and cervical carcinoma. Clin Transl Oncol. 2007;9:443–51.

    Article  PubMed  CAS  Google Scholar 

  28. Hirano K, Hunt CA. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration. J Pharm Sci. 1985;74:915–21.

    Article  PubMed  CAS  Google Scholar 

  29. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther. 1971;178:562–4.

    PubMed  CAS  Google Scholar 

  30. Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol. 2003;52:405–10.

    Article  PubMed  CAS  Google Scholar 

  31. Mohamed F, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions. J Surg Res. 2003;113:114–20.

    Article  PubMed  CAS  Google Scholar 

  32. Tsai M, Lu Z, Wang J, Yeh T-K, Wientjes M, Au J. Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res. 2007;24:1691–701.

    Article  PubMed  CAS  Google Scholar 

  33. Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JL. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327:673–82.

    Article  PubMed  CAS  Google Scholar 

  34. Yeo Y, Ito T, Bellas E, Highley CB, Marini R, Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann Surg. 2007;245:819–24.

    Article  PubMed  Google Scholar 

  35. Gelderblom H, Verweij J, van Zomeren DM, Buijs D, Ouwens L, Nooter K, et al. Influence of cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8:1237–41.

    PubMed  CAS  Google Scholar 

  36. Knemeyer I, Wientjes MG, Au JL. Cremophor reduces paclitaxel penetration into bladder wall during intravesical treatment. Cancer Chemother Pharmacol. 1999;44:241–8.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8:1263–8.

    PubMed  CAS  Google Scholar 

  38. Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Materi Res Part A. 2006;77A:351–61.

    Article  CAS  Google Scholar 

  39. Tamura T, Imai J, Matsumoto A, Tanimoto M, Suzuki A, Horikiri Y, et al. Organ distribution of cisplatin after intraperitoneal administration of cisplatin-loaded microspheres. Eur J Pharm Biopharm. 2002;54:1–7.

    Article  PubMed  CAS  Google Scholar 

  40. Huang YH, Zugates GT, Peng W, Holtz D, Dunton C, Green JJ, et al. Nanoparticle-delivered suicide gene therapy effectively reduces ovarian tumor burden in mice. Cancer Res. 2009;69:6184–91.

    Article  PubMed  CAS  Google Scholar 

  41. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74:72–84.

    Article  PubMed  CAS  Google Scholar 

  42. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 2001;46:149–68.

    Article  PubMed  CAS  Google Scholar 

  43. Bennis S, Chapey C, Robert J, Couvreur P. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30:89–93.

    Article  Google Scholar 

  44. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6:1949–57.

    PubMed  CAS  Google Scholar 

  45. Michieli M, Damiani D, Ermacora A, Masolini P, Michelutti A, Michelutti T, et al. Liposome-encapsulated daunorubicin for PGP-related multidrug resistance. Br J Haematol. 1999;106:92–9.

    Article  PubMed  CAS  Google Scholar 

  46. Rahman A, Husain SR, Siddiqui J, Verma M, Agresti M, Center M, et al. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. J Natl Cancer Inst. 1992;84:1909–15.

    Article  PubMed  CAS  Google Scholar 

  47. Sadava D, Coleman A, Kane SF. Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res. 2002;12:301–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a grant from the Lilly Endowment, Inc. to the School of Pharmacy and Pharmaceutical Sciences, Purdue University, and the NIH R21 CA135130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Yeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, G., Yeo, Y. Drug Delivery Systems for Intraperitoneal Therapy. Pharm Res 27, 735–738 (2010). https://doi.org/10.1007/s11095-009-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0031-z

KEY WORDS

Navigation