Skip to main content

Advertisement

Log in

In Vitro and In Vivo Release of Vascular Endothelial Growth Factor from Gelatin Microparticles and Biodegradable Composite Scaffolds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work evaluated gelatin microparticles and biodegradable composite scaffolds for the controlled release of vascular endothelial growth factor (VEGF) in vitro and in vivo.

Methods

Gelatin crosslinking, VEGF dose, and buffer type were investigated for their effects on VEGF release. Release was also evaluated from microparticles confined within porous polymer scaffolds (composites). In vitro and in vivo studies were conducted using radiolabeled VEGF.

Results

The effect of VEGF dose on its fractional release from gelatin microparticles in vitro was minimal, but the addition of collagenase to the buffer resulted in a higher cumulative release of VEGF. Gelatin crosslinking extent was a significant factor on release from both microparticles alone and composite scaffolds in vitro and in vivo. VEGF bioactivity from composite scaffolds in vitro was maintained above 90% of the expected bioactivity over 14 days.

Conclusions

VEGF release kinetics were dependent on the extent of gelatin crosslinking and were characteristic of the specific growth factor due to the effects of growth factor size, charge, and conformation on its complexation with gelatin. These studies demonstrate the utility of gelatin microparticles and their composite scaffolds as delivery vehicles for the controlled release of VEGF for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

BMP-2:

bone morphogenetic protein-2

Coll:

collagenase-containing phosphate buffered saline

GPC:

gel permeation chromatography

HUVECs:

human umbilical vein endothelial cells

IGF-1:

insulin-like growth factor-1

IEP:

isoelectric point

microCT:

microcomputed tomography

PBS:

phosphate buffered saline

PPF:

poly(propylene fumarate)

SEM:

scanning electron microscopy

TGF-β1:

transforming growth factor-β1

VEGF:

vascular endothelial growth factor

VOI:

volume of interest

References

  1. L. A. Lakey, R. Akella, and J. P. Ranieri. Angiogenesis: Implications for tissue repair. In J. E. Davies (ed.), Bone Engineering, Em Squared Inc, Toronto, 2000, pp. 137–142.

    Google Scholar 

  2. R. Strocchi, G. Orsini, G. Iezzi, A. Scarano, C. Rubini, G. Pecora, and A. Piattelli. Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. J. Oral. Implantol. 28:273–278 (2002). doi:10.1563/1548-1336(2002)028<0273:BRWCSE0273:BRWCSE>2.3.CO;2.

    Article  PubMed  Google Scholar 

  3. J. Glowacki. Angiogenesis in fracture repair. Clin. Orthop. 355S:S82–S89 (1998). doi:10.1097/00003086-199810001-00010.

    Article  Google Scholar 

  4. H. P. Gerber, and N. Ferrara. Angiogenesis and bone growth. Trends Cardiovasc. Med. 10:223–228 (2000). doi:10.1016/S1050-1738(00)00074-8.

    Article  PubMed  CAS  Google Scholar 

  5. H. Winet, J. Y. Bao, and R. Moffat. A control model for tibial cortex neovascularization in the bone chamber. J. Bone. Miner. Res. 5:19–30 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. J. Schmid, B. Wallkamm, C. H. Hammerle, S. Gogolewski, and N. P. Lang. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin. Oral. Implants. Res. 8:244–248 (1997). doi:10.1034/j.1600-0501.1997.080311.x.

    Article  PubMed  CAS  Google Scholar 

  7. Y. Tabata, M. Miyao, M. Ozeki, and Y. Ikada. Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J. Biomater. Sci. Polym. Ed. 11:915–930 (2000). doi:10.1163/156856200744101.

    Article  PubMed  CAS  Google Scholar 

  8. C. Wong, E. Inman, R. Spaethe, and S. Helgerson. Fibrin-based biomaterials to deliver human growth factors. Thromb. Haemost. 89:573–582 (2003).

    PubMed  CAS  Google Scholar 

  9. S. Soker, M. Machado, and A. Atala. Systems for therapeutic angiogenesis in tissue engineering. World J. Urol. 18:10–18 (2000). doi:10.1007/PL00007070.

    Article  PubMed  CAS  Google Scholar 

  10. M. Sheridan, L. D. Shea, M. C. Peters, and D. J. Mooney. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factory delivery. J. Control. Release. 64:91–102 (2000). doi:10.1016/S0168-3659(99)00138-8.

    Article  PubMed  CAS  Google Scholar 

  11. W. I. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 21:2521–2527 (2000). doi:10.1016/S0142-9612(00)00120-4.

    Article  PubMed  CAS  Google Scholar 

  12. K. Y. Lee, M. C. Peters, and D. J. Mooney. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release. 87:49–56 (2003). doi:10.1016/S0168-3659(02)00349-8.

    Article  PubMed  CAS  Google Scholar 

  13. M. Yamamoto, Y. Ikada, and Y. Tabata. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J. Biomater Sci. Polym. Ed. 12:77–88 (2001). doi:10.1163/156856201744461.

    Article  PubMed  CAS  Google Scholar 

  14. T. A. Holland, Y. Tabata, and A. G. Mikos. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release. 101:111–125 (2005). doi:10.1016/j.jconrel.2004.07.004.

    Article  PubMed  CAS  Google Scholar 

  15. T. A. Holland, J. K. Tessmar, Y. Tabata, and A. G. Mikos. Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release. 94:101–114 (2004). doi:10.1016/j.jconrel.2003.09.007.

    Article  PubMed  CAS  Google Scholar 

  16. R. G. Payne, J. S. McGonigle, M. J. Yaszemski, A. W. Yasko, and A. G. Mikos. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 23:4381–4387 (2002). doi:10.1016/S0142-9612(02)00186-2.

    Article  PubMed  CAS  Google Scholar 

  17. T. A. Holland, and A. G. Mikos. Advances in drug delivery for articular cartilage. J. Control. Release. 86:1–14 (2003). doi:10.1016/S0168-3659(02)00373-5.

    Article  PubMed  CAS  Google Scholar 

  18. T. A. Holland, Y. Tabata, and A. G. Mikos. In vitro release of transforming growth factor-beta1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release. 91:299–313 (2003). doi:10.1016/S0168-3659(03)00258-X.

    Article  PubMed  CAS  Google Scholar 

  19. P. R. Salacinski, C. McLean, J. E. Sykes, V. V. Clement-Jones, and P. J. Lowry. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 117:136–146 (1981). doi:10.1016/0003-2697(81)90703-X.

    Article  PubMed  CAS  Google Scholar 

  20. A. K. Shung, E. Behravesh, S. Jo, and A. G. Mikos. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng. 9:243–254 (2003). doi:10.1089/107632703764664710.

    Article  PubMed  CAS  Google Scholar 

  21. B. D. Porter, J. B. Oldham, S. L. He, M. E. Zobitz, R. G. Payne, K. N. An, B. L. Currier, A. G. Mikos, and M. J. Yaszemski. Mechanical properties of a biodegradable bone regeneration scaffold. J. Biomech. Eng. 122:286–288 (2000). doi:10.1115/1.429659.

    Article  PubMed  CAS  Google Scholar 

  22. E. L. Hedberg, H. C. Kroese-Deutman, C. K. Shih, R. S. Crowther, D. H. Carney, A. G. Mikos, and J. A. Jansen. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. A. 72:343–353 (2005). doi:10.1002/jbm.a.30265.

    PubMed  Google Scholar 

  23. Z. S. Patel. Controlled delivery of angiogenic and osteogenic growth factors for bone regeneration. Rice University, Houston, 2008.

    Google Scholar 

  24. M. C. Peters, B. C. Isenberg, J. A. Rowley, and D. J. Mooney. Release from alginate enhances the biological actiivty of vascular endothelial growth factor. J. Biomater. Sci. Polym. Ed. 9:1267–1278 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Ikada, and Y. Tabata. Protein release from gelatin matrices. Adv. Drug. Deliv. Rev. 31:287–301 (1998). doi:10.1016/S0169-409X(97)00125-7.

    Article  PubMed  Google Scholar 

  26. Y. A. Muller, B. Li, H. W. Christinger, J. A. Wells, B. C. Cunningham, and A. M. de Vos. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. U. S. A. 94:7192–7197 (1997). doi:10.1073/pnas.94.14.7192.

    Article  PubMed  CAS  Google Scholar 

  27. W. C. Parks. Matrix metalloproteinases in repair. Wound Repair Regen. 7:423–432 (1999). doi:10.1046/j.1524-475X.1999.00423.x.

    Article  PubMed  CAS  Google Scholar 

  28. Y. Tabata, and Y. Ikada. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials. 20:2169–2175 (1999). doi:10.1016/S0142-9612(99)00121-0.

    Article  PubMed  CAS  Google Scholar 

  29. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001). doi:10.1038/nbt1101-1029.

    Article  PubMed  CAS  Google Scholar 

  30. A. Lode, A. Reinstorf, A. Bernhardt, C. Wolf-Brandstetter, U. Konig, and M. Gelinsky. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J. Biomed. Mater. Res. A. 27:27 (2007).

    Google Scholar 

  31. J. E. Park, G. A. Keller, and N. Ferrara. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell. 4:1317–1326 (1993).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support of this work by a grant from the National Institutes of Health (R01-DE15164) (AGM) and by a National Science Foundation Graduate Research Fellowship (ZSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios G. Mikos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, Z.S., Ueda, H., Yamamoto, M. et al. In Vitro and In Vivo Release of Vascular Endothelial Growth Factor from Gelatin Microparticles and Biodegradable Composite Scaffolds. Pharm Res 25, 2370–2378 (2008). https://doi.org/10.1007/s11095-008-9685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9685-1

KEY WORDS

Navigation