Skip to main content

Advertisement

Log in

Gene Delivery to the Epidermal Cells of Human Skin Explants Using Microfabricated Microneedles and Hydrogel Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Microneedles disrupt the stratum corneum barrier layer of skin creating transient pathways for the enhanced permeation of therapeutics into viable skin regions without stimulating pain receptors or causing vascular damage. The cutaneous delivery of nucleic acids has a number of therapeutic applications; most notably genetic vaccination. Unfortunately non-viral gene expression in skin is generally inefficient and transient. This study investigated the potential for improved delivery of plasmid DNA (pDNA) in skin by combining the microneedle delivery system with sustained release pDNA hydrogel formulations.

Materials and Methods

Microneedles were fabricated by wet etching silicon in potassium hydroxide. Hydrogels based on Carbopol polymers and thermosensitive PLGA-PEG-PLGA triblock copolymers were prepared. Freshly excised human skin was used to characterise microneedle penetration (microscopy and skin water loss), gel residence in microchannels, pDNA diffusion and reporter gene (β-galactosidase) expression.

Results

Following microneedle treatment, channels of approximately 150–200 μm depth increased trans-epidermal water loss in skin. pDNA hydrogels were shown to harbour and gradually release pDNA. Following microneedle-assisted delivery of pDNA hydrogels to human skin expression of the pCMVβ reporter gene was demonstrated in the viable epidermis proximal to microchannels.

Conclusions

pDNA hydrogels can be successfully targeted to the viable epidermis to potentially provide sustained gene expression therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87:922–925 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. F. Chabri, K. Bouris, T. Jones, D. Barrow, A. Hann, C. Allender, K. Brain, and J. Birchall. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br. J. Dermatol. 150:869–877 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. W. Martanto, S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill, and M. R. Prausnitz. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21:947–952 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. J. A. Matriano, M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam, and P. E. Daddona. Macroflux® microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 19:63–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. R. K. Sivamani, B. Stoeber, G. C. Wu, H. Zhai, D. Liepmann, and H. Maibach. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res. Technol. 11:152–156 (2005).

    Article  PubMed  Google Scholar 

  6. J. H. Park, M. G. Allen, and M. R. Prausnitz. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23:1008–1019 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. H. S. Gill and M. R. Prausnitz. Coated microneedles for transdermal delivery. J. Control. Release 117:227–237 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. J. C. Birchall, S. A. Coulman, M. Pearton, C. Allender, K. Brain, A. Anstey, C. Gateley, N. Wilke, and A. Morrissey. Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch microfabricated microneedles. J. Drug Target. 13:415–421 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. S. A. Coulman, D. Barrow, A. Anstey, C. Gateley, A. Morrissey, N. Wilke, C. Allender, K. Brain, and J. C. Birchall. Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr. Drug Discov. 3:65–75 (2006).

    Article  CAS  Google Scholar 

  10. I. R. Williams and T. S. Kupper. Immunity at the surface: homeostatic mechanisims of the skin immune system. Life Sci. 58:1485–1507 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. E. F. Fynan, R. G. Webster, D. H. Fuller, J. R. Haynes, J. C. Santoro, and H. L. Robinson. DNA vaccines: protective immunizations by parenteral, mucosal and gene-gun innoculations. Proc. Natl. Acad. Sci. U. S. A. 90:11478–11482 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. S. Kaushik, A. H. Hord, D. D. Denson, D. V. McAllister, S. Smitra, M. G. Allen, and M. R. Prausnitz. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92:502–504 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. M. T. S. Lin, L. Pulkkinen, and J. Uitto. Cutaneous gene therapy—principles and prospects. Dermatol. Clin. 18:177–187 (2000).

    PubMed  CAS  Google Scholar 

  14. J. A. Mikszta, J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis, and N. G. Harvey. Improved genetic immunization via micromechanical disruption of skin-barrier function and targetted epidermal delivery. Nat. Med. 8:415–419 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. I. Csoka, E. Csanyi, G. Zapantis, E. Nagy, A. Feher-Kiss, G. Horvath, G. Blazso, and I. Eros. In vitro and in vivo percutaneous absorption of topical dosage forms: case studies. Int. J. Pharm. 291:11–19 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. P. Mura, G. P. Bettinetti, A. Liguori, and G. Bramanti. Improvement of clonazepam release from a Carbopol hydrogel. Pharm. Acta Helv. 67:282–288 (1992).

    PubMed  CAS  Google Scholar 

  19. F. A. Ismail, J. Napaporn, J. A. Hughes, and G. A. Brazeau. In situ gel formulations for gene delivery: release and myotoxicity studies. Pharm. Dev. Technol. 5:391–397 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim. Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. M. S. Shim, H. T. Lee, W. S. Shim, I. Park, H. Lee, T. Chang, S. W. Kim, and D. S. Lee. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Materi. Res. 61:188–196 (2002).

    Article  CAS  Google Scholar 

  22. P. Lee, Z. Li, and L. Huang. Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm. Res. 20:1995–2000 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. J. Nieuwenhuis. Synthesis of polylactides and their copolymers. Clin. Mater. 10:59–67 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. B. Jeong, Y. H. Bae, and S. W. Kim. In situ gelation of PEG-PLGA-PEG triblock copolymer solutions and degredation thereof. J. Biomed. Materi. Res. 50:171–177 (2000).

    Article  CAS  Google Scholar 

  25. W. Amass, A. Amass, and B. Tighe. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47:89–144 (1998).

    Article  CAS  Google Scholar 

  26. D. V. McAllister, P. M. Wang, S. P. Davis, J. H. Park, P. J. Canatella, M. G. Allen, and M. R. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 100:13755–13760 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. J. H. Park, M. G. Allen, and M. R. Prausnitz. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Release 104:51–66 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. J. C. Birchall, I. W. Kellaway, and M. Gumbleton. Physical stability and in-vitro gene expression efficiency of nebulised lipid-peptide-DNA complexes. Int. J. Pharm. 197:221–231 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. N. Wilke, A. Mulcahy, S.-R. Ye, and A. Morrissey. Process optimisation and characterisation of silicon microneedles fabricated by wet etch technology. Microelectron. J. 36:650–656 (2005).

    Article  CAS  Google Scholar 

  30. G. M. Zentner, R. Rathi, J. Shih, J. C. McRea, M. Seo, H. Oh, B. G. Rhee, J. Mestecky, Z. Moldoveanu, M. Morgan, and S. Weitman. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release 72:203–215 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. B. Jeong, Y. H. Bae, and S. W. Kim. Biodegradable Thermosensitive Micelles of PEG-PLGA-PEG Triblock Copolymers. Colloids Surf., B Biointerfaces. 16:185–193 (1999).

    Article  CAS  Google Scholar 

  32. K. Rengarajan, S. M. Cristol, M. Mehta, and J. M. Nickerson. Quantifying DNA concentrations using fluorometry: A comparision of fluorophores. Mol. Vis. 8:416–421 (2002).

    PubMed  CAS  Google Scholar 

  33. S. Chen, R. Pieper, D. C. Webster, and J. Singh. Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int. J. Pharm. 288:207–218 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Z. Li, W. Ning, J. Wang, A. Choi, P. Y. Lee, P. Tyagi, and L. Huang. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20:884–888 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the BBSRC for financial support of MP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Birchall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearton, M., Allender, C., Brain, K. et al. Gene Delivery to the Epidermal Cells of Human Skin Explants Using Microfabricated Microneedles and Hydrogel Formulations. Pharm Res 25, 407–416 (2008). https://doi.org/10.1007/s11095-007-9360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9360-y

Key words

Navigation