Skip to main content

Advertisement

Log in

Decreased Proliferation and Erythroid Differentiation of K562 Cells by siRNA-induced Depression of OCTN1 (SLC22A4) Transporter Gene

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Recently, it was reported that OCTN1 transporter (SLC22A4) is associated with rheumatoid arthritis (RA) and Crohn’s disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, preferentially in erythroid cells. Accordingly, we assessed the physiological role of OCTN1 by examining the effect of knockdown of OCTN1 in blood cells using siRNA method.

Materials and Methods

Vector-based short hairpin RNA (shRNA) was used to establish K562 cell line which shows stably decreased expression of OCTN1. The characteristic of knockdown of OCTN1 in K562 cells was investigated by cell proliferation, cell differentiation, and uptake of ergothioneine that is a good substrate of OCTN1.

Results

Several clones of K562 cells exhibited significantly reduced expression of OCTN1 mRNA and protein. They also showed a decreased growth rate and butyrate-dependent differentiation to erythrocytes compared with control-vector transfected cells. In addition, uptake of [3H]ergothioneine by K562 cells suggested that Na+-dependent and high-affinity transporter which is similar to the characteristics of OCTN1 is functional. Moreover, uptake of ergothioneine by K562 cells which exhibit decreased-expression of OCTN1 was decreased in comparison with wild type K562 cells.

Conclusions

It was suggested that OCTN1 is involved in the transport of physiological compounds that are important for cell proliferation and erythroid differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ET:

ergothioneine

FBS:

fetal bovine serum

G3PDH:

glyceraldehyde-3-phosphate dehydrogenase

NMG:

N-methyl-d-glucamine

OCTN:

organic cation/carnitine transporter

PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

RA:

rheumatoid arthritis

References

  1. I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419:107–111 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. H. Yabuuchi, I. Tamai, J. Nezu, K. Sakamoto, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289:768–773 (1999).

    PubMed  CAS  Google Scholar 

  3. I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. I. Tamai, R. Ohashi, J. Nezu, Y. Sai, D. Kobayashi, A. Oku, M. Shimane, and A. Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J. Biol. Chem. 275:40064–40072 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. J. Nezu, I. Tamai, A. Oku, R. Ohashi, H. Yabuuchi, N. Hashimoto, H. Nikaido, Y. Sai, A. Koizumi, Y. Shoji, G. Takada, T. Matsuishi, M. Yoshino, H. Kato, T. Ohura, G. Tsujimoto, J. Hayakawa, M. Shimane, and A. Tsuji. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 21:91–94 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. I. Tamai, T. Nakanishi, D. Kobayashi, K. China, Y. Kosugi, J. Nezu, Y. Sai, and A. Tsuji. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol. Pharm. 1:57–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. D. Kobayashi, S. Aizawa, T. Maeda, I. Tsuboi, H. Yabuuchi, J. Nezu, A. Tsuji, and I. Tamai. Expression of organic cation transporter OCTN1 in hematopoietic cells during erythroid differentiation. Exp. Hematol. 32:1156–1162 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. S. Tokuhiro, R. Yamada, X. Chang, A. Suzuki, Y. Kochi, T. Sawada, M. Suzuki, M. Nagasaki, M. Ohtsuki, M. Ono, H. Furukawa, M. Nagashima, S. Yoshino, A. Mabuchi, A. Sekine, S. Saito, A. Takahashi, T. Tsunoda, Y. Nakamura, and M. Yamamoto. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35:341–348 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. V. Peltekova, R. F. Wintle, L. A. Rubin, C. L. Amos, Q. Huang, X. Gu, B. Newman, M. V. Oene, D. Cescon, G. Greenberg, A. M. Griffiths, P. H. St George-Hyslop, and K. A. Siminovitch. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–475 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. K. Yamazaki, M. Takazae, T. Tanaka, T. Ichimori, S. Saito, A. Iida, Y. Onouchi, A. Hata, and Y. Nakamura. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J. Hum. Genet. 49:664–668 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. D. Gründemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, N. Jung, A. Rubbert, and E. Schomig. Discovery of ergothioneine transporter. Proc. Natl. Sci. U.S.A. 102:5256–5261 (2005).

    Article  CAS  Google Scholar 

  12. D. Taubert, G. Grimberg, N. Jung, A. Rubbert, and E. Schomig. Function role of the 503F variant of the organic cation transporter OCTN1 in Crohn’s disease. Gut 54:1505–1506 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. T. Mayumi, K. Okamoto, K. Yoshida, Y. Kawai, H. Kawano, T. Hama, and K. Tanaka. Studies on Ergothioneine. VIII. Preventive effects of ergothioneine on cadmium-induced teratogenesis. Chem. Pharm. Bull. 30:2141–2146 (1982).

    PubMed  CAS  Google Scholar 

  14. P. E. Hartman. Ergothioneine as antioxidant. Methods Enzymol. 186:310–318 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Shima, T. Maeda, S. Aizawa, I. Tsuboi, D. Kobayashi, R. Kato, and I. Tamai. L-arginine import via cationic amino acid transporter CAT1 is essential for both differentiation and proliferation of erythrocytes. Blood 107:1352–1356 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. C. P. Perkins, V. Mar, J. R. Shutter, J. del Castillo, D. M. Danilenko, E. S. Medlock, I. L. Ponting, M. Graham, K. L. Stark, Y. Zuo, J. M. Cunningham, and R. A. Bosselman. Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev. 11:914–925 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. M. Jordan, A. Schalhorn, and F. M. Wurm. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24:596–601 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. T. Nozawa, M. Nakajima, I. Tamai, K. Noda, J. Nezu, Y. Sai, A. Tsuji, and T. Yokoi. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): Allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804–813 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. C. Zhang, Z. Ao, A. Seth, and S. F. Schlossman. A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J. Immunol. 157:3980–3987 (1996).

    PubMed  CAS  Google Scholar 

  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  21. K. Yamaoka, Y. Tanigawa, T. Nakagawa, and A. Uno. pharmacokinetic analysis programa (multi) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).

    PubMed  CAS  Google Scholar 

  22. Y. Kawasaki, Y. Kato, Y. Sai, and A. Tsuji. Functional characterization of human organic cation transporter OCTN1 single nucleotide polymorphisms in the Japanese population. J. Pharm. Sci. 93:2920–2926 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. T. Konishi, N. Tamaki, F. Tunemori, N. Masumitu, H. Okumura, and T. Hama. Studies on ergothioneine (II) origin of ergothioneine in the animal organs. Vitamins 46:127–129 (1972).

    CAS  Google Scholar 

  24. J.-H. Jang, O. I. Aruoma, L. S. Jen, H. Y. Chung, and Y. J. Surh. Ergothioneine resucues PC12 cells from β-amyloid-induced apoptotic death. Free Radic. Biol. Med. 36:288–299 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. T. Maeda, T. Wakasawa, Y. Shima, I. Tsuboi, S. Aizawa, and I. Tamai. Biol. Pharm. Bull. 29:234–239 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. K. Oishi, S. Hofmann, G. A. Diaz, B. Tartania, D. Manwani, L. Ng, R. Young, H. Vlassara, Y. A. Loannou, D. Forrest, and B. D. Gelb. Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum. Mol. Genet. 11:2951–2960 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. T. Maeda, M. Hirayama, D. Kobayashi, K. Miyazawa, and I. Tamai. Mechanism of the regulation of OCTN1 transporter (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. Drug Metab. Dispos. 35:394–401 (2007).

    Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by a Grant in Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikumi Tamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Sugiura, S., Kobayashi, D. et al. Decreased Proliferation and Erythroid Differentiation of K562 Cells by siRNA-induced Depression of OCTN1 (SLC22A4) Transporter Gene. Pharm Res 24, 1628–1635 (2007). https://doi.org/10.1007/s11095-007-9290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9290-8

Key words

Navigation