Skip to main content

Advertisement

Log in

Encapsulation of Nucleic Acids and Opportunities for Cancer Treatment

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The development of nucleic acid drugs for the treatment of various cancers has shown great promise in recent years. However, efficient delivery of these drugs to target cells remains a significant challenge towards the successful development of such therapies. This review provides a comprehensive overview of encapsulation technologies being developed for the delivery of nucleic acid-based anti-cancer agents. Both micro and nanoparticles systems are discussed along with their use in delivering plasmid DNA as well as oligonucleotides. The majority of the systems discussed have used DNA immunotherapy as the potential mode of anticancer therapy, which requires targeting to antigen presenting cells. Other applications, including those with oligonucleotides, focus on targeting tumor cells directly. The results obtained so far show the excellent promise of encapsulation as an efficient means of delivering therapeutic nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. V. A. Wynter. The dialectics of cancer: a theory of the initiation and development of cancer through errors in siRNA. Med. Hypotheses 66:612–635 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. P. T. Reiger. The biology of cancer genetics. Sem. Oncol. Nurs. 20:145–154 (2004).

    Article  Google Scholar 

  3. R. K. Jain. Barriers to drug delivery in solid tumors. Sci. Am. 271:58–65 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. R. K. Jain. Transport of molecules, particles and cells in solid tumors. Annu. Rev. Biomed. Eng. 1:241–263 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. R. K. Jain. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release 74:7–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. R. K. Jain. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46:149–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. C. Pozrikidis and D. A. Farrow. A model of fluid flow in solid tumors. Ann. Biomed. Eng. 31:181–194 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. M. J. Hawkins, J. R. Lane, L. Harris, P. J. Williams, V. Trieu, P. Soon-Shiong, and N. Desai. Comparative pharmacokinetic (pk) study of a cremophor-free, protein stabilized, nanoparticle formulation (abi-007) and a cremophor-based formulation of paclitaxel (p) in patients with advanced solid tumors. Eur. J. Cancer Suppl. 2:164 (2004).

    Article  Google Scholar 

  9. Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, and Y. Li. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm. 288:361–368 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. H. Miura, H. Onishi, M. Sasatsu, and Y. Machida. Antitumor characteristics of methoxypolyethylene glycol-poly(-lactic acid) nanoparticles containing camptothecin. J. Control. Release 97:101–113 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. J. Hyung Park, S. Kwon, M. Lee, H. Chung, J.-H. Kim, Y.-S. Kim, R.-W. Park, I.-S. Kim, S. Bong Seo, I. C. Kwon, and S. Young Jeong. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials 27:119–126 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. S. A. Rosenberg, P. M. Aebersold, K. Cornetta, A. Kasid, R. A. Morgan, R. Moen, E. M. Karson, M. T. Lotze, J. C. Yang, S. L. Topalian, M. H. Merino, K. Culver, A. D. Miller, M. D. Blaese, and W. F. Anderson. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323:570–578 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. A. El-Aneed. Current strategies in cancer gene therapy. Eur. J. Pharmacol. 498:1–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. T. Niidomeand and L. Huang. Gene therapy progress and prospects: non-viral vectors. Gene Ther. Wkly. 9:1647–1652 (2002).

    Article  CAS  Google Scholar 

  15. S. E. Raper, N. Chirmule, F. S. Lee, N. A. Wivel, A. Bagg, G. P. Gao, J. M. Wilson, and M. L. Batshaw. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molec. Genet. Metab. 80:148–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. A. Berns. Good news for gene therapy. N. Engl. J. Med. 350:1679–1680 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. S. Hacein-Bey-Abina, C. von Kalle, M. Schmidt, F. Le Deist, N. Wulffraat, E. McIntyre, I. Radford, J. L. Villeval, C. C. Fraser, M. Cavazzana-Calvo, and A. Fischer. A serious adverse event after successful gene therapy for x-linked severe combined immunodeficiency. N. Engl. J. Med. 348:255–256 (2003).

    Article  PubMed  Google Scholar 

  18. Y. Kaneda and Y. Tabata. Non-viral vectors for cancer therapy. Cancer Sci. 97:348–354 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. G. Kaul and M. Amiji. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22:951–961 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev., Drug Discov. 4:581–593 (2005).

    Article  CAS  Google Scholar 

  21. R. A. Jain. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. D. T. Birnbaum, J. D. Kosmala, and L. Brannon-Peppas. Optimization of preparation techniques for poly(lactic acid-co-glycolic acid) nanoparticles. J. Nanopart. Res. 2:173–181 (2000).

    Article  CAS  Google Scholar 

  23. F. Fawaz, F. Bonini, M. Guyot, A.-M. Lagueny, H. Fessi, and J.-P. Devissaguet. Influence of poly(dl-lactide) nanocapsules on the biliary clearance and enterohepatic circulation of indomethacin in the rabbit. Pharm. Res. 10:750–756 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. P. D. Scholes, A. G. A. Coombes, L. Illum, S. S. Davis, M. Vert, and M. C. Davies. The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. J. Control. Release 25:145–153 (1993).

    Article  CAS  Google Scholar 

  25. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D’Angelo, L. Cattel, and P. Couvreur. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89:1452–1464 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. G. Russell-Jones, K. McTavish, J. McEwan, J. Rice, and D. Nowotnik. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 98:1625–1633 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. J. Jo, M. Yamamoto, K. Matsumoto, T. Nakamura, and Y. Tabata. Liver targeting of plasmid DNA with a cationized pullulan for tumor suppression. J. Nanosci. Nanotech. 6:2853–2859 (2006).

    Article  CAS  Google Scholar 

  29. S. Krasnici, A. Werner, M. Eichhorn, M. Schmitt-Sody, S. Pahernik, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer 105:561–567 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. M. C. Woodleand and P. Y. Lu. Nanoparticles deliver rnai therapy. Nanotoday August 8:34–41 (2005).

    Google Scholar 

  31. A. V. Harpe, H. Petersen, Y. Li, and T. Kissel. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 69:309–322 (2000).

    Article  Google Scholar 

  32. S. Kawakami, S. Fumoto, M. Nishikawa, F. Yamashita, and M. Hashida. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm. Res. 17:306–313 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guerin, G. Paradis, H.-K. Nguyen, B. Ochietti, Y. G. Suzdaltseva, E. V. Bartakova, T. K. Bronich, Y. St.-Pierre, V. Y. Alakhov, and A. V. Kabanov. Block and graft copolymers and nanogel copolymer networks for DNA delivery into cell. J. Drug Target. 8:91–105 (2000).

    PubMed  CAS  Google Scholar 

  34. Y.-B. Lim, S.-O. Han, H.-U. Kong, Y. Lee, J.-S. Park, B. Jeong, and S. W. Kim. Biodegradable polyester, poly(alpha-(4-aminobutyl)-l-glycolic acid), as a non-toxic gene carrier. Pharm. Res. 17:811–816 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. E. G. Saravolac, O. Ludkovski, R. Skirrow, M. Ossanlou, Y. P. Zhang, C. Giesbrecht, J. Thompson, S. Thomas, H. Stark, P. R. Cullis, and P. Scherrer. Encapsulation of plasmid DNA in stabilized plasmid-lipid particles composed of different cationic lipid concentration for optimal transfection activity. J. Drug Target. 7:423–437 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. E. Schacht, V. Toncheva, L. D. Kie, and P. Dubruel. Synthetic polymers as vectors for gene delivery. Polym Prepr (Am Chem Soc, Div Polym Chem) 41:1609–1610 (2000).

    CAS  Google Scholar 

  37. S. W. Yi, T. Y. Yune, T. W. Kim, H. Chung, Y. W. Choi, I. C. Kwon, E. B. Lee, and S. Y. Joeng. A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm. Res. 17:314–320 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. N. Shi, R. J. Boado, and W. M. Pardridge. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18:1091–1095 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. P. Dubruel, B. Christiaens, B. Vanloo, K. Bracke, M. Rosseneu, J. Vandekerckhove, and E. Schacht. Physcichemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. Eur. J. Pharm. Sci. 18:211–220 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. T. Hao, U. McKeever, and M. L. Hedley. Biological potency of microsphere encapsulated plasmid DNA. J. Control. Release 69:249–259 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. L. Lunsford, U. McKeever, V. Eckstein, and M. L. Hedley. Tissue distribution and persistence in mice of plasmid DNA encapsulated in a PLGA-based microsphere delivery vehicle. J. Drug Target. 8:39–50 (2000).

    PubMed  CAS  Google Scholar 

  42. A. M. Tinsley-Bown, R. Fretwell, A. B. Dowsett, S. L. Davis, and G. H. Farrar. Formulation of poly(d,l-lactic-co-glycolic acid) microparticles for rapid plasmid DNA delivery. J. Control. Release 66:229–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. M. Stern, K. Ulrich, D. M. Geddes, and E. W. Alton. Poly (d, l-lactide-co-glycolide)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo. Gene Therapy 10:1282–1288 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. S. R. Little, D. M. Lynn, Q. Ge, D. G. Anderson, S. V. Puram, J. Chen, H. N. Eisen, and R. Langer. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl. Acad. Sci. USA. 101:9534–9539 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. E. Walter, D. Dreher, M. Kok, L. Thiele, S. G. Kiama, P. Gehr, and H. P. Merkle. Hydrophilic poly(dl-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Release 76:149–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. E. Walter, L. Thiele, and H. P. Merkle. Gene delivery systems to phagocytic antigen-presenting cells. STP Pharma. Sci. 11:45–56 (2001).

    CAS  Google Scholar 

  47. E. Walter, K. Moelling, J. Pavlovic, and H. P. Merkle. Microencapsulation of DNA using poly(dl-lactide-co-glycolide): stability issues and release characteristics. J. Control. Release 61:361–374 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. U. McKeever, S. Barman, T. Hao, P. Chambers, S. Song, L. Lunsford, Y. Hsu, K. Roy, and M. Hedley. Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine. 20:1524–1531 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. S. L. Goh, N. Murthy, M. Xu, and J. M. Frechet. Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjug. Chem. 15:67–74 (2004).

    Article  CAS  Google Scholar 

  50. S. P. Kasturi, K. Sachaphibulkij, and K. Roy. Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 26:6375–6385 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. G. Lambert, E. Fattal, and P. Couvreur. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv. Drug Deliv. Rev. 47:99–112 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. J. M. Benns and S. W. Kim. Tailoring new gene delivery designs for specific targets. J. Drug Target. 8:1–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. G. Giammona, G. Cavallaro, G. Pitarresi, and E. Pedone. Novel polyaminoacidic copolymers as nonviral gene vectors. Colloid Polym. Sci. 278:69–73 (2000).

    Article  CAS  Google Scholar 

  54. S. Ohashi, T. Kubo, T. Ikeda, Y. Arai, K. Takahashi, Y. Hirasawa, M. Takigawa, E. Satoh, J. Imanishi, and O. Mazda. Cationic polymer-mediated genetic transduction into cultured human chondrosarcoma-derived hcs-2/8 cells. J. Orthop. Sci. 6:75–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. W. Suh, S.-O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol. Ther. 6:664–672 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. J. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. S.-O. Han, R. I. Mahato, Y. K. Sung, and S. W. Kim. Development of biomaterials for gene therapy. Mol. Ther. 2:302–317 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. M. E. Davis. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13:128–131 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54:715–758 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. A. Vila, A. Sanchez, C. Perez, and M. J. Alonso. PLA-PAG nanospheres: New carriers for transmucosal delivery of proteins and plasmid DNA. Polym. Adv. Technol. 13:851–858 (2002).

    Article  CAS  Google Scholar 

  61. G. G. d. Barrio, F. J. Novo, and J. M. Irache. Loading of plasmid DNA into PLGA microparticles using TROMS (total recirculation one-machine system): evaluation of its integrity and controlled release properties. J. Control. Release 86:123–130 (2003).

    Article  PubMed  Google Scholar 

  62. S. Rhaese, H. v. Briesen, H. Rubsamen-Waigmann, J. Kreuter, and K. Langer. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J. Control. Release 92:199–208 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. S. Prabha and V. Labhasetwar. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm. Res. 21:354–364 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. S. Hirosue, B. G. Müller, R. C. Mulligan, and R. Langer. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J. Control. Release 70:231–242 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Y. Liu and X. Deng. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(dl-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J. Control. Release 83:147–155 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. C. Perez, A. Sanchez, D. Putman, D. Ting, R. Langer, and M. J. Alonso. Poly(lactic acid)-poly)ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release 75:211–224 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. M. Sandor, S. Mehta, J. Harris, C. Thanos, P. Weston, J. Marshall, and E. Mathiowitz. Transfection of hek cells via DNA-loaded PLGA and p(FASA) nanospheres. J. Drug Target. 10:497–506 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. S. Ando, D. Putnam, D. W. Pack, and R. Langer. Plga microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 88:126–130 (1999).

    Article  PubMed  CAS  Google Scholar 

  69. J. H. Jeong, S. W. Kim, and T. G. Park. Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharm. Res. 21:50–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57:1–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. H. Mao, K. Roy, V. Troung-Le, K. Janes, K. Lin, Y. Wang, J. August, and K. Leong. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70:399–421 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. K. Roy, H. Mao, S. Huang, and K. Leong. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5:387–391 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. A. Bozkir and I. M. Saka. Chitosan nanoparticles for plasmid DNA delivery: effect if chitosan molecular structure on formulation and release characteristics. Drug Deliv. 11:107–112 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. M. N. V. R. Kumar, U. Bakowsky, and C. M. Lehr. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 25:1771–1777 (2004).

    Article  CAS  Google Scholar 

  75. U. Galderisi, A. Cascino, and A. Giordano. Antisense oligonucleotides as therapeutic agents. J. Cell Physiol. 181:251–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  76. C. Chavany, Y. Connell, and L. Neckers. Contribution of sequence and phosphorothioate content to inhibition of cell growth and adhesion caused by c-myc antisense oligomers. Mol. Pharmacol. 48:736–746 (1995).

    Google Scholar 

  77. B. P. Monia, J. F. Johnston, T. Geiger, M. Muller, and D. Fabbro. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against c-raf kinase. Nat. Med. 2:668–675 (1996).

    Article  PubMed  CAS  Google Scholar 

  78. M. D. deSmet, C. J. Meenken, and G. J. v. d. Horn. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of cmv retinitis. Ocul. Immunol. Inflamm. 7:189–198 (1999).

    Article  CAS  Google Scholar 

  79. M. Butler and K. Stecker. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab. Invest. 77:379–388 (1997).

    PubMed  CAS  Google Scholar 

  80. R. Z. Yu and J. Q. Su. Prediction of clinical responses in a simulated phase III trial of Crohn’s patients administered the antisense phosphorothioate oligonucleotide ISIS 2302: comparison of proposed dosing regimens. Antisense Nucleic Acid Drug Dev. 13:57–66 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. R. L. Juliano, S. Alahari, H. Yoo, R. Kole, and M. Cho. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16:494–502 (1999).

    Article  PubMed  CAS  Google Scholar 

  83. C. J. Marcus-Sekura, A. M. Woerner, K. Shinozuka, G. Zon, and G. V. Quinnan. Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotides analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages. Nucleic Acids Res. 15:5749–5763 (1987).

    Article  PubMed  CAS  Google Scholar 

  84. A. C. Kilic, Y. Capan, I. Vural, R. N. Gursoy, T. Dalkara, A. Cuine, and A. A. Hincal. Preparation and characterization of PLGA nanospheres for the targeted delivery of nr2b-specific antisense oligonucleotides to the nmda receptors in the brain. J. Microencapsul 22:633–641 (2005).

    Article  PubMed  CAS  Google Scholar 

  85. G. Lambert, J. R. Bertrand, E. Fattal, F. Subra, H. Pinto-Alphandary, C. Malvy, C. Auclair, and P. Couvreur. Ews fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem. Biophys. Res. Commun. 279:401–406 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. A. J. Hollins, M. Benboubetra, Y. Omidi, B. H. Zinselmeyer, A. G. Schatzlein, I. F. U. IF, and S. Akhtar. Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm. Res. 21:458–466 (2004).

    Article  PubMed  CAS  Google Scholar 

  87. L. M. Santhakumaran, T. Thomas, and T. J. Thomas. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res. 32:2102–2112 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. D. Lochmann, J. Weyermann, C. Georgens, R. Prassl, and A. Zimmer. Albumin-protamine-oligonucleotide nanoparticles as a new antisense delivery system. Part 1: physicochemical characterization. Eur. J. Pharm. Biopharm. 59:419–429 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. J. Weyermann, D. Lochmann, C. Georgens, and A. Zimmer. Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect. Eur. J. Pharm. Biopharm. 59:431–438 (2005).

    Article  PubMed  CAS  Google Scholar 

  90. J. H. Seong, K. M. Lee, S. T. Kim, S. E. Jin, and C. K. Kim. Polyethylenimine-based antisense oligodeoxynucleotides of il-4 suppress the production of il-4 in a murine model of airway inflammation. J. Gene Med. 8:314–323 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. S. Gao, J. Chen, L. Dong, Z. Ding, Y. H. Yang, and J. Zhang. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur. J. Pharm. Biopharm. 60:327–334 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. S. P. Kasturi, H. Qin, K. S. Thomson, S. El-Bereir, S. C. Cha, S. Neelapu, L. W. Kwak, and K. Roy. Prophylactic anti-tumor effects in a b cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J. Control. Release 113:261–270 (2006).

    Article  CAS  Google Scholar 

  93. A. Maheshwari, R. I. Mahato, J. McGregor, S. Han, W. E. Samlowski, J. S. Park, and S. W. Kim. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol. Ther. 2:121–130 (2000).

    Article  PubMed  CAS  Google Scholar 

  94. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Brannon-Peppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brannon-Peppas, L., Ghosn, B., Roy, K. et al. Encapsulation of Nucleic Acids and Opportunities for Cancer Treatment. Pharm Res 24, 618–627 (2007). https://doi.org/10.1007/s11095-006-9208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9208-x

Key words

Navigation