Skip to main content

Advertisement

Log in

Influence of Drug Transporter Polymorphisms on Pravastatin Pharmacokinetics in Humans

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The role of drug transporters in pravastatin disposition is underlined by the fact that pravastatin does not undergo significant cytochrome P-450 (CYP)-mediated biotransformation. The organic anion transporting polypeptide 1B1 (OATP1B1), encoded by SLCO1B1, and multidrug resistance-associated protein 2 [MRP2 (ABCC2)], are thought to be the major transporters involved in the pharmacokinetics of pravastatin in humans. Other transporters that may play a role include OATP2B1, organic anion transporter 3 (OAT3), bile salt export pump (BSEP), and the breast cancer resistance protein (BCRP). OATP1B1 and MRP2 mediate the hepatic uptake and biliary excretion of pravastatin, respectively. The SLCO1B1 and ABCC2 polymorphisms probably contribute to the high interindividual variability in pravastatin disposition. Recent small studies have characterized the impact of the SLCO1B1 polymorphism on pravastatin in humans, and especially the c.521T>C single-nucleotide polymorphism (SNP) seems to be an important determinant of pravastatin pharmacokinetics. Pravastatin plasma concentrations may be up to 100% higher in subjects carrying the c.521C variant, as found in the *5, *15, *16, and *17 haplotypes, reflecting diminished OATP1B1-mediated uptake into the major site of pravastatin elimination, the liver. The SLCO1B1 polymorphism seems to have a similar impact on the pharmacokinetics of single- and multiple-dose pravastatin. Overall, 2–5% of individuals in various populations may be expected to show markedly elevated plasma pravastatin concentrations due to the SLCO1B1 polymorphism. Of note, the impact of the SLCO1B1 polymorphism on statins may be dependent on ethnicity. Although individuals with a diminished hepatic uptake of pravastatin might be expected to show reduced cholesterol-lowering efficacy due to lower intracellular pravastatin concentrations, there is preliminary evidence to suggest that the SLCO1B1 polymorphism is not a major determinant of non-response to pravastatin. The possible consequences of drug transporter polymorphisms, especially the SLCO1B1 and ABCC2 polymorphisms, for the lipid-lowering efficacy and tolerability of pravastatin in various ethnic groups warrant further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

area under the plasma concentration–time curve

BCRP:

breast cancer resistance protein

BSEP:

bile salt export pump

C max :

peak concentration in plasma

CYP:

cytochrome P-450

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A

LDL:

low-density lipoprotein

MRP:

multidrug resistance-associated protein

NTCP:

sodium-dependent taurocholate cotransporting polypeptide

OAT:

organic anion transporter

OATP:

organic anion transporting polypeptide

SNP:

single-nucleotide polymorphism

References

  1. S. M. Singhvi, H. Y. Pan, R. A. Morrison, and D. A. Willard. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 29:239–243 (1990).

    PubMed  CAS  Google Scholar 

  2. T. Hatanaka. Clinical pharmacokinetics of pravastatin. Mechanisms of pharmacokinetic events. Clin. Pharmacokinet. 39:397–412 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. B. A. Hamelin and J. Turgeon. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol. Sci. 19:26–37 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. D. W. Everett, T. J. Chando, G. C. Didonato, S. M. Singhvi, H. Y. Pan, and S. H. Weinstein. Biotransformation of pravastatin sodium in humans. Drug Metab. Dispos. 19:740–748 (1991).

    PubMed  CAS  Google Scholar 

  5. J. Triscari, D. O’Donnell, M. Zinny, and H. Y. Pan. Gastrointestinal absorption of pravastatin in healthy subjects. J. Clin. Pharmacol. 35:142–144 (1995).

    PubMed  CAS  Google Scholar 

  6. D. Williams, and J. Feely. Pharmacokinetic–pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin. Pharmacokinet. 41:343–370 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. C. Transon, T. Leemann, and P. Dayer. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur. J. Clin. Pharmacol. 50:209–215 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. W. Jacobsen, G. Kirchner, K. Hallensleben, L. Mancinelli, M. Deters, I. Hackbarth, L. Z. Benet, K. F. Sewing, and U. Christians. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab. Dispos. 27:173–179 (1999).

    PubMed  CAS  Google Scholar 

  9. W. Jacobsen, G. Kirchner, K. Hallensleben, L. Mancinelli, M. Deters, I. Hackbarth, K. Baner, L. Z. Benet, K. F. Sewing, and U. Christians. Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and comparison with pravastatin. J. Pharmacol. Exp. Ther. 291:131–139 (1999).

    PubMed  CAS  Google Scholar 

  10. P. J. Neuvonen, T. Kantola, and K. T. Kivistö. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin. Pharmacol. Ther. 63:332–341 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. T. Kantola, J. T. Backman, M. Niemi, K. T. Kivistö, and P. J. Neuvonen. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur. J. Clin. Pharmacol. 56:225–229 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. B. Hsiang, Y. Zhu, Z. Wang, Y. Wu, V. Sasseville, W. P. Yang, and T. G. Kirchgessner. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor trans-porters. J. Biol. Chem. 274:37161–37168 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. D. Nakai, R. Nakagomi, Y. Furuta, T. Tokui, T. Abe, T. Ikeda, and K. Nishimura. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J. Pharmacol. Exp. Ther. 297:861–867 (2001).

    PubMed  CAS  Google Scholar 

  14. Y. Kameyama, K. Yamashita, K. Kobayashi, M. Hosokawa, and K. Chiba. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet. Genomics 15:513–522 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. M. Yamazaki, S. Akiyama, K. Ni’Inuma, R. Nishigaki, and Y. Sugiyama. Biliary excretion of pravastatin in rats: contribution of the excretion pathway mediated by canalicular multispecific organic anion transporter (cMOAT). Drug Metab. Dispos. 25:1123–1129 (1997).

    PubMed  CAS  Google Scholar 

  16. H. Fujino, D. Nakai, R. Nakagomi, M. Saito, T. Tokui, and J. Kojima. Metabolic stability and uptake by human hepatocytes of pitavastatin, a new inhibitor of HMG-CoA reductase. Arzneimittelforschung 54:382–388 (2004).

    PubMed  CAS  Google Scholar 

  17. M. Hirano, K. Maeda, Y. Shitara, and Y. Sugiyama. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J. Pharmacol. Exp. Ther. 311:139–146 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. R. B. Kim. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what’s it all about? Clin. Pharmacol. Ther. 75:381–385 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. S. G. Simonson, A. Raza, P. D. Martin, P. D. Mitchell, J. A. Jarcho, C. D. Brown, A. S. Windass, and D. W. Schneck. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther. 76:167–177 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. R. H. Ho and R. B. Kim. Transporters and drug therapy: implications for drug disposition and disease. Clin. Pharmacol. Ther. 78:260–277 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. R. G. Tirona. Ethnic differences in statin disposition. Clin. Pharmacol. Ther. 78:311–316 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. J. König, Y. Cui, A. T. Nies, and D. Keppler. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol.: Gastrointest. Liver Physiol. 278:G156–G164 (2000).

    Google Scholar 

  23. P. Chandra and K. L. Brouwer. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm. Res. 21:719–735 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. K. Ito, H. Suzuki, T. Horie, and Y. Sugiyama. Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm. Res. 22:1559–1577 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. J. König, A. T. Nies, Y. Cui, I. Leier, and D. Keppler. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta 1461:377–394 (1999).

    Article  PubMed  Google Scholar 

  26. P. M. Gerk and M. Vore. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J. Pharmacol. Exp. Ther. 302:407–415 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. D. Kobayashi, T. Nozawa, K. Imai, J. I. Nezu, A. Tsuji, and I. Tamai. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther. 306:703–708 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. M. Takeda, R. Noshiro, M. L. Onozato, A. Tojo, H. Hasannejad, X. L. Huang, S. Narikawa, and H. Endou. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur. J. Pharmacol. 483:133–138 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. M. Hirano, K. Maeda, H. Hayashi, H. Kusuhara, and Y. Sugiyama. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 314:876–882 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. M. Hirano, K. Maeda, S. Matsushima, Y. Nozaki, H. Kusuhara, and Y. Sugiyama. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol. 68:800–807 (2005).

    PubMed  CAS  Google Scholar 

  31. T. Gerloff, B. Stieger, B. Hagenbuch, J. Madon, L. Landmann, J. Roth, A. F. Hofmann, and P. J. Meier. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273:10046–10050 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. M. Maliepaard, G. L. Scheffer, I. F. Faneyte, M. A. van Gastelen, A. C. Pijnenborg, A. H. Schinkel, M. J. van De Vijver, R. J. Scheper, and J. H. Schellens. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61:3458–3464 (2001).

    PubMed  CAS  Google Scholar 

  33. K. Bogman, A. K. Peyer, M. Torok, E. Kusters, and J. Drewe. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol. 132:1183–1192 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. E. Wang, C. N. Casciano, R. P. Clement, and W. W. Johnson. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm. Res. 18:800–806 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. C. Chen, R. J. Mireles, S. D. Campbell, J. Lin, J. B. Mills, J. J. Xu, and T. A. Smolarek. Differential interaction of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab. Dispos. 33:537–546 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. S. Matsushima, K. Maeda, C. Kondo, M. Hirano, M. Sasaki, H. Suzuki, and Y. Sugiyama. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin–Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J. Pharmacol. Exp. Ther. 314:1059–1067 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Shitara, T. Itoh, H. Sato, A. P. Li, and Y. Sugiyama. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304:610–616 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. W. Mück, I. Mai, L. Fritsche, K. Ochmann, G. Rohde, S. Unger, A. Johne, S. Bauer, K. Budde, I. Roots, H. H. Neumayer, and J. Kuhlmann. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin. Pharmacol. Ther. 65:251–261 (1999).

    Article  PubMed  Google Scholar 

  39. M. Hedman, P. J. Neuvonen, M. Neuvonen, C. Holmberg, and M. Antikainen. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin. Pharmacol. Ther. 75:101–109 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. M. Hermann, A. Åsberg, H. Christensen, H. Holdaas, A. Hartmann, and J. L. Reubsaet. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin. Pharmacol. Ther. 76:388–391 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. I. Tamai and A. R. Safa. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 265:16509–16513 (1990).

    PubMed  CAS  Google Scholar 

  42. Z. S. Chen, T. Kawabe, M. Ono, S. Aoki, T. Sumizawa, T. Furukawa, T. Uchiumi, M. Wada, M. Kuwano, and S. I. Akiyama. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol. Pharmacol. 56:1219–1228 (1999).

    PubMed  CAS  Google Scholar 

  43. M. Yamazaki, S. Akiyama, R. Nishigaki, and Y. Sugiyama. Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm. Res. 13:1559–1564 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. R. H. Ho, R. G. Tirona, B. F. Leake, H. Glaeser, W. Lee, C. J. Lemke, Y. Wang, and R. B. Kim. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Y. Nishizato, I. Ieiri, H. Suzuki, M. Kimura, K. Kawabata, T. Hirota, H. Takane, S. Irie, H. Kusuhara, Y. Urasaki, A. Urae, S. Higuchi, K. Otsubo, and Y. Sugiyama. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73:554–565 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. J. Mwinyi, A. Johne, S. Bauer, I. Roots, and T. Gerloff. Evidence for inverse effects of OATP-C (SLC21A6) *5 and *1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75:415–421 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. M. Niemi, E. Schaeffeler, T. Lang, M. F. Fromm, M. Neuvonen, C. Kyrklund, J. T. Backman, R. Kerb, M. Schwab, P. J. Neuvonen, M. Eichelbaum, and K. T. Kivistö. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–440 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. M. Niemi, P. J. Neuvonen, U. Hofmann, J. T. Backman, M. Schwab, D. Lütjohann, K. von Bergmann, M. Eichelbaum, and K. T. Kivistö. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet. Genomics 15:303–309 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. M. K. Pasanen, J. T. Backman, P. J. Neuvonen, and M. Niemi. Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 (SLCO1B1) gene in a Finnish population. Eur. J. Clin. Pharmacol. 62:409–415 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. J. Y. Chung, J. Y. Cho, K. S. Yu, J. R. Kim, D. S. Oh, H. R. Jung, K. S. Lim, K. H. Moon, S. G. Shin, and I. J. Jang. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78:342–350 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. E. Lee, S. Ryan, B. Birmingham, J. Zalikowski, R. March, H. Ambrose, R. Moore, C. Lee, Y. Chen, and D. Schneck. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther. 78:330–341 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. R. G. Tirona, B. F. Leake, G. Merino, and R. B. Kim. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:35669–35675 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. R. G. Tirona, B. F. Leake, A. W. Wolkoff, and R. B. Kim. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J. Pharmacol. Exp. Ther. 304:223–228 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. T. Nozawa, H. Minami, S. Sugiura, A. Tsuji, and I. Tamai. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab. Dispos. 33:434–439 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. M. Niemi, J. T. Backman, L. I. Kajosaari, J. B. Leathart, M. Neuvonen, A. K. Daly, M. Eichelbaum, K. T. Kivistö, and P. J. Neuvonen. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 77:468–478 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. T. Nozawa, M. Nakajima, I. Tamai, K. Noda, J. I. Nezu, Y. Sai, A. Tsuji, and T. Yokoi. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804–813 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. C. Michalski, Y. Cui, A. T. Nies, A. K. Nuessler, P. Neuhaus, U. M. Zanger, K. Klein, M. Eichelbaum, D. Keppler, and J. König. A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J. Biol. Chem. 277:43058–43063 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. M. Iwai, H. Suzuki, I. Ieiri, K. Otsubo, and Y. Sugiyama. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 14:749–757 (2004)

    Article  PubMed  CAS  Google Scholar 

  59. K. Maeda, I. Ieiri, K. Yasuda, A. Fujino, H. Fujiwara, K. Otsubo, M. Hirano, T. Watanabe, Y. Kitamura, H. Kusuhara, and Y. Sugiyama. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin. Pharmacol. Ther. 79:427–439 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. M. Igel, K. A. Arnold, M. Niemi, U. Hofmann, M. Schwab, D. Lütjohann, K. von Bergmann, M. Eichelbaum, and K. T. Kivistö. Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin. Clin. Pharmacol. Ther. 79:419–426 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. M. Sasaki, H. Suzuki, K. Ito, T. Abe, and Y. Sugiyama. Transcellular transport of organic anions across a double-transfected Madin–Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277:6497–6503 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. S. Toh, M. Wada, T. Uchiumi, A. Inokuchi, Y. Makino, Y. Horie, Y. Adachi, S. Sakisaka, and M. Kuwano. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin–Johnson syndrome. Am. J. Hum. Genet. 64:739–746 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. K. T. Kivistö, O. Grisk, U. Hofmann, K. Meissner, K. U. Möritz, C. Ritter, K. A. Arnold, D. Lütjohann, K. von Bergmann, I. Klöting, M. Eichelbaum, and H. K. Kroemer. Disposition of oral and intravenous pravastatin in Mrp2-deficient TR- rats. Drug Metab. Dispos. 33:1593–1596 (2005).

    Article  PubMed  Google Scholar 

  64. M. Niemi, K. A. Arnold, J. T. Backman, M. K. Pasanen, U. Gödtel-Armbrust, L. Wojnowski, U. M. Zanger, P. J. Neuvonen, M. Eichelbaum, K. T. Kivistö, and T. Lang. Association of genetic polymorphism in ABCC2 with hepatic MRP2 expression and pravastatin pharmacokinetics. Pharmacogenet. Genomics (2006) (in press).

  65. C. Marzolini, E. Paus, T. Buclin, and R. B. Kim. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther. 75:13–33 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. W. Zhang, B. N. Yu, Y. J. He, L. Fan, Q. Li, Z. Q. Liu, A. Wang, Y. L. Liu, Z. R. Tan, Fen-Jiang, Y. F. Huang, and H. H. Zhou. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 373:99–103 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. K. Kajinami, N. Takekoshi, M. E. Brousseau, and E. J. Schaefer. Pharmacogenetics of HMG-CoA reductase inhibitors: exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis 177:219–234 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. A. H. Maitland-van der Zee and E. Boerwinkle. Pharmacogenetics of response to statins: where do we stand? Curr. Atheroscler. Rep. 7:204–208 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. I. Zineh. HMG-CoA reductase inhibitor pharmacogenomics: overview and implications for practice. Future Cardiol. 1:191–206 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. F. Pazzucconi, F. Dorigotti, G. Gianfranceschi, G. Campagnoli, M. Sirtori, G. Franceschini, and C. R. Sirtori. Therapy with HMG CoA reductase inhibitors: characteristics of the long term permanence of hypocholesterolemic activity. Atherosclerosis 117:189–198 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. D. I. Chasman, D. Posada, L. Subrahmanyan, N. R. Cook, V. P. Stanton Jr, and P. M. Ridker. Pharmacogenetic study of statin therapy and cholesterol reduction. J. Am. Assoc. Med. 291:2821–2827 (2004).

    Article  CAS  Google Scholar 

  72. J. F. Thompson, M. Man, K. J. Johnson, L. S. Wood, M. E. Lira, D. B. Lloyd, P. Banerjee, P. M. Milos, S. P. Myrand, J. Paulauskis, M. A. Milad, and W. J. Sasiela. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J 5:352–358 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. R. H. Knopp. Drug treatment of lipid disorders. N. Engl. J. Med. 341:498–511 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. J. A. Tobert. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2:517–526 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. P. H. Jones, J. A. Farmer, M. D. Cressman, J. M. McKenney, J. T. Wright, J. D. Proctor, D. M. Berkson, D. J. Farnham, P. M. Wolfson, and H. T. Colfer. Once-daily pravastatin in patients with primary hypercholesterolemia: a dose–response study. Clin. Cardiol. 14:146–151 (1991).

    Article  PubMed  CAS  Google Scholar 

  76. D. R. Illingworth, D. W. Erkelens, U. Keller, G. R. Thompson, and M. J. Tikkanen. Defined daily doses in relation to hypolipidaemic efficacy of lovastatin, pravastatin, and simvastatin. Lancet 343:1554–1555 (1994).

    Article  PubMed  CAS  Google Scholar 

  77. S. Marshall, P. A. Meredith, and H. L. Elliott. Efficacy of low-density-lipoprotein lowering with statins. Lancet 344:684 (1994).

    Article  PubMed  CAS  Google Scholar 

  78. E. Reihner, M. Rudling, D. Stahlberg, L. Berglund, S. Ewerth, I. Björkhem, K. Einarsson, and B. Angelin. Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N. Engl. J. Med. 323:224–228 (1990).

    Article  PubMed  CAS  Google Scholar 

  79. D. D. Cilla Jr, L. R. Whitfield, D. M. Gibson, A. J. Sedman, and E. L. Posvar. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin. Pharmacol. Ther. 60:687–695 (1996).

    Article  PubMed  CAS  Google Scholar 

  80. T. A. Miettinen, H. Gylling, N. Lindbohm, T. E. Miettinen, R. A. Rajaratnam, and H. Relas. Finnish Treat-to-Target Study Investigators. Serum noncholesterol sterols during inhibition of cholesterol synthesis by statins. J. Lab. Clin. Med. 141:131–137 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. R. Tachibana-Iimori, Y. Tabara, H. Kusuhara, K. Kohara, R. Kawamoto, J. Nakura, K. Tokunaga, I. Kondo, Y. Sugiyama, and T. Miki. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet. 19:375–380 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. M. A. Pfeffer, A. Keech, F. M. Sacks, S. M. Cobbe, A. Tonkin, R. P. Byington, B. R. Davis, C. P. Friedman, and E. Braunwald. Safety and tolerability of pravastatin in long-term clinical trials: prospective Pravastatin Pooling (PPP) Project. Circulation 105:2341–2346 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. P. D. Thompson, P. Clarkson, and R. H. Karas. Statin-associated myopathy. J. Am. Assoc. Med. 289:1681–1690 (2003).

    Article  CAS  Google Scholar 

  84. K. Morimoto, T. Oishi, S. Ueda, M. Ueda, M. Hosokawa, and K. Chiba. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab. Pharmacokinet. 19:453–455 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. I. Björkhem, T. Miettinen, E. Reihner, S. Ewerth, B. Angelin, and K. Einarsson. Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. J. Lipid Res. 28:1137–1143 (1987).

    PubMed  Google Scholar 

  86. H. J. Kempen, J. F. Glatz, J. A. Gevers Leuven, H. A. van der Voort, and M. B. Katan. Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J. Lipid Res. 29:1149–1155 (1988).

    PubMed  CAS  Google Scholar 

  87. T. A. Miettinen, R. S. Tilvis, and Y. A. Kesäniemi. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am. J. Epidemiol. 131:20–31 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari T. Kivistö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivistö, K.T., Niemi, M. Influence of Drug Transporter Polymorphisms on Pravastatin Pharmacokinetics in Humans. Pharm Res 24, 239–247 (2007). https://doi.org/10.1007/s11095-006-9159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9159-2

Key words

Navigation