Skip to main content
Log in

Additive-Induced Metastable Single Crystal of Mefenamic Acid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To utilize additives to develop a strategy and a method to grow single crystals that allow structure determination of a metastable form of a drug.

Materials and Methods

The metastable form of mefenamic acid (MFA) was grown in the presence of various amounts of the structurally similar additive flufenamic acid (FFA) in ethanol. Single crystal X-ray analysis was performed on the single crystals of MFA II that were formed. The solubility of MFA in the presence of FFA was measured to elucidate the mechanism of MFA II formation.

Results

A supersaturated solution of MFA in ethanol produced the metastable form using FFA as an additive. Ethanol–water mixtures and toluene were also used to investigate the relationships between form produced and solvent since these two solvent systems do not produce MFA II.

Conclusions

Additives can be used to obtain the metastable form of pharmaceutical compounds, and the relationships between molecules and solvent as well as between host and guest molecules are critical to obtaining the desired form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. R. Byrn, R. R. Pfeiffer, and J. G. Stowell. Solid-State Chemistry of Drugs. Second Edition. SSCI Inc. (1999).

  2. U.S. Food and Drug Administration. Meeting Scientific Considerations of Polymorphism in Pharmaceutical Solids: Abbreviated New Drug Applications. http://www.fda.gov/ohrms/dockets/ac/02/briefing/3900B1_04_Polymorphism.htm (accessed 12/15/2005), part of U.S. Food and Drug Administration. http://www.fda.gov (accessed 12/15/2005).

  3. S. R. Vippagunta, H. G. Brittain, and D. J. W. Grant. Crystalline solids. Adv. Drug Deliv. Rev. 48: 3–26 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. L. Addadi, Z. Berkovitch-Yellin, N. Domb, E. Gait, M. Lahav, and L. Leiserowitz. Resolution of conglomerates by stereoselective habit modifications. Nature. 296:21–26 (1982).

    Article  CAS  Google Scholar 

  5. Z. Berkovitch-Yellin, L. Addadi, M. Idelson, L. Leiserowitz, and M. Lahav. Absolute configuration of chiral polar crystals. Nature. 296:27–34 (1982).

    Article  CAS  Google Scholar 

  6. L. Addadi, Z. Berkovitch-Yellin, I. Weissbuch, M. Lahav, and L. Leiserowitz. The use of “Enantiopolar” directions in centrosymmetric crystals for direct assignment of absolute configuration of chiral molecules: Application to the system serine/threonine. J. Am. Chem. Soc. 104:2075–2077 (1982).

    Article  CAS  Google Scholar 

  7. I. Weissbuch, L. Addadi, Z. Berkovitch-Yellin, E. Gati, S. Weinstein, M. Lahav, and L. Leiserowitz. Centrosymmetric crystals for the direct assignment of the absolute configuration of chiral molecules. Application to the á-amino acid by their effect on glycine crystals. J. Am. Chem. Soc. 105:6615–6621 (1983).

    Article  CAS  Google Scholar 

  8. R. J. Flower. Drugs which inhibit prostaglandin biosynthesis. Pharmacol. Rev. 26:33–67 (1974).

    PubMed  CAS  Google Scholar 

  9. S. L. A. Munro and D. J. Craik. NMR conformational studies of fenamate non-steroidal anti-inflammatory drugs. Magn. Reson. Chem. 32:335–342 (1994).

    Article  CAS  Google Scholar 

  10. J. J. Lozano, R. Pouplanar, M. Lopez, and J. Ruiz. Conformational analysis of the anti-inflammatory fenamates: a molecular mechanics and semiempirical molecular orbital study. J. Mol. Struct. (Theochem). 335:215–227 (1995).

    Article  CAS  Google Scholar 

  11. V. Dhanaraj and M. Vijayan. Structural studies of analgesics and their interactions. XII. Structure and interactions of anti-inflammtory fenamtes. A concerted crystallographic and theoretical conformational study. Acta Crystallogr. B. 44:406–412 (1988).

    Article  PubMed  Google Scholar 

  12. A. J. Aguiar and J. E. Zelmer. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 58:83–987 (1969).

    Google Scholar 

  13. S. Romero, B. Escalera, and P. Bustamante. Solubility behavior of polymorphs I and II of mefenamic acid in solvent mixtures. Int. J. Pharm. 178:193–202 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. A. Adam, L. Schrimpl, and P. C. Schmidt. Some physicochemical properties of mefenamic acid. Drug Dev. Ind. Pharm. 26:477–487 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. A. Adam, L. Schrimpl, and P. C. Schmidt. Factors influencing capping and cracking of mefenamic acid tablets. Drug Dev. Ind. Pharm. 26:489–497 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. R. Panchagnula, P. Sundaramurthuy, O. Pillai, S. Agrawal, and Y. Ashok Raj. Solid-state characterization of mefenamic acid. J. Pharm. Sci. 93:1019–1029 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. T. Umeda, N. Ohnishi, T. Yokoyama, T. Kuroda, Y. Kita, K. Kuroda, E. Tatsumi, and Y. Matsuda. A kinetic study on the isothermal transition of polymorphic forms of tolbutamide and mefenamic acid in the solid state at high temperatures. Chem. Pharm. Bull. 33:2073–2078 (1985).

    PubMed  CAS  Google Scholar 

  18. J. F. McConnell and F. Z. Company, N-(2,3-xylyl) anthranilic acid, C15H15NO2 mefenamic acid, Cryst. Struct. Commun. 5:861–864 (1976).

    CAS  Google Scholar 

  19. Z. Otwinowski and W. Minor. Methods Enzymol 276:307–326 (1997).

    Article  CAS  Google Scholar 

  20. Bruker, XPREP in SHELXTL version 6.12, Bruker AXS Inc., Madison, Wisconsin, USA. (2002).

  21. M. C. Burla, R. Caliandro, M. Camali, B. Carrozzini, G. L. Cascarano, L. De Caro, D. Giacovazzo, G. Polidori, and R. Spagna. J. Appl. Crystallogr. 38:381–388 (2005).

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick, SHELXL97. A Program for Crystal Structure Refinement. University of Gottingen, Germany, (1997).

    Google Scholar 

  23. Vishweshwar, P. McMahon, J. A. Oliveira, M. Peterson, M. L. and J. Zaworotko. The predictably elusive form II of aspirin. J. Am. Chem. Soc. 127:16802–16803 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. H. M. Krishna Murthy, T. N. Bhat, and M. Bijayan. Structure of a new crystal form of 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid (flufenamic acid). Acta Crystallogr., Sect.B:Struct. Crystallogr. Cryst. Chem. 38:315–317 (1982).

    Article  Google Scholar 

  25. H. Xiarong, J. G. Stowell Xiaorong, K. R. Morris, R. R. Pfeiffer, G. Hui Li, P. Stahly, and S. R. Byrn. Stabilization of a metastable polymorph of 4-methyl-2-nitroacetanilide by isomorphic additives. Cryst. Growth Des. 1:305–312 (2001).

    Article  CAS  Google Scholar 

  26. K. Y. Chow, J. Go, M. Mehdizadeh, and D. J. W. Grant. Modification of adipic acid crystals: influence of growth in the presence of fatty acid additives on crystal properties. Int. J. Pharm. 20:3–34 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Eun Hee Lee thanks Dr. Phillip E. Fanwick for crystal structure solution of MFA II. The financially support from the Purdue-Michigan Program on the Chemical and Physical Stability of Pharmaceutical Solids is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Byrn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.H., Byrn, S.R. & Carvajal, M.T. Additive-Induced Metastable Single Crystal of Mefenamic Acid. Pharm Res 23, 2375–2380 (2006). https://doi.org/10.1007/s11095-006-9045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9045-y

Key words

Navigation