Skip to main content

Advertisement

Log in

Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro.

Methods

PLGA and an anticancer drug—paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines.

Results

PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol®.

Conclusions

Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Dzenis. Spinning continuous fibers for nanotechnology. Science 304:1917–1919 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. J. Venugopal and S. Ramakrishna. Application of polymer nanofibers in biomedicine and biotechnology. Appl. Biochem. Biotechnol. 125(3):147–158 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J. H. Wendorff. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym. Adv. Technol. 16:276–282 (2005).

    Article  CAS  Google Scholar 

  4. B. Chu, B. S. Hsiao, D. Fang, and C. Brathwaite. Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications. US patent 6,689,374 (2004).

  5. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. S. Y. Chew, J. Wen, E. K. F. Yim, K. W. Leong. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 81:57–64 (2002).

    Article  CAS  Google Scholar 

  9. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, M. Hadjiargyrou. Development of a nanostrucutured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 89:341–353 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. K. Kim, Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou. Incorporation and controlled release for a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibers scaffolds. J. Controlled Release 98:47–56 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. E. H. Sanders, R. Kloefkorn, G. L. Bowlin, D. G. Simpson, and G. E. Wnek. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers. Macromolecules 36:3803–3805 (2003).

    Article  CAS  Google Scholar 

  12. B. Chu, B. S. Hsiao, M. Hadjiargyrou, D. Fang, X. Zong, and K. Kim. Cell delivery system comprising a fibrous matrix and cells. US Patent 6,790,455 (2004).

  13. X. Xu, L. Yang, X. Xu, X. Wang, X. Chen, Q. Liang, J. Zeng, and X. Jing. Ultrafine medicated fibers electrospun from W/O emulsions. J. Control. Release 108(1):33–42 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing. Biodegradable electrospun fibers for drug delivery. J. Control. Release 92:227–231 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, and X. Jing. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release 105(1–2):43–51 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. S. C. Steiniger, J. Kreuter, A. S. Khalansky, I. N. Skidan, A. I. Bobruskin, and Z. S. Smimova. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 109:759–767 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. P. P. Wang, J. Frazier, and H. Brem. Local drug delivery to the brain. Adv. Drug Del. Rev. 54:987–1013 (2002).

    Article  CAS  Google Scholar 

  18. M. Westphal, D. C. Hilt, and E. Bortey. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. 5:79–88 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. J. R. Silber, M. S. Bobola, S. Ghatan, A. Blank, D. D. Kolstoe, and M. S. Berger. O 6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res. 58:1068–1073 (1998).

    PubMed  CAS  Google Scholar 

  20. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179–192 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. M. A. Cahan, K. A. Walter, O. M. Colvin, and H. Brem. Cytotoxicity of Taxol in vitro against human and rat malignant brain tumours. Cancer Chemothe. Pharmacol. 33:441–444 (1994).

    Article  CAS  Google Scholar 

  22. S. Fellner, B. Bauer, D. S. Miller, M. Schaffrik, M. Fankhanel, T. Spruh, G. Bernhardt, C. Graeff, L. Farber, H. Gschaidmeier, A. Buschsuer, and G. Fricker. Transport of Paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest. 10(9):1309–1317 (2002).

    Google Scholar 

  23. R. Klecker, C. Jamis-Dow, M. Egorin, K. Erkmen, R. Parker, and J. Collins. Distribution and metabolism of 3H-Taxol in the rat. Proc. Am. Assoc. Cancer Res. 34:380 (1993).

    Google Scholar 

  24. J. J. Heimans, J. B. Vermorken, J. G. Wolbers, C. M. Eeltink, O. W. M. Meijer, M. J. B. Taphoorn, and J. H. Beijnen. Paclitaxel (Taxol) concentrations in brain tumor tissue. Ann. Onc. 5:951–953 (1994).

    CAS  Google Scholar 

  25. K. A. Walter, A. C. Mitchell, A. Gur, B. Tyler, J. Hilton, O. M. Colvin, P. C. Burger, A. Domb, and H. Brem. Interstitial Taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54:2207–2212 (1994).

    PubMed  CAS  Google Scholar 

  26. R. B. Tishler, C. R. Geard, E. J. Hall, and P. B. Schiff. Taxol sensitizes human astrocytoma cells to radiation. Cancer Res. 52:3495–3497 (1992).

    PubMed  CAS  Google Scholar 

  27. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart. Nanostructured fibers via electrospinning. Adv. Mater. 13:70–72 (2001).

    Article  CAS  Google Scholar 

  28. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466 (2002).

    Article  CAS  Google Scholar 

  29. I. K. Kwon, S. Kidoaki, and T. Matsuda. Electrospun nano- to microfibers fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. L. Tong, H. Wang, and X. Wang. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375–1381 (2004).

    Article  CAS  Google Scholar 

  31. C. Dubernet. Thermoanalysis of microspheres. Thermochimica Acta 248:259–269 (1995).

    Article  Google Scholar 

  32. G. Verreck, I. Chun, J. Peeters, J. Rosenblatt, and M. E. Brewster. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20(5):810–817 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. O. I. Corrigan. Thermal analysis of spray dried products. Thermochim Acta 248:245–258 (1995).

    Article  CAS  Google Scholar 

  34. T. G. Park. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. A. Domb, Z. H. Israel, O. Elmalak, D. Teomim, and A. Bentolia. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm. Res. 16:762–765 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. S. A. Azizi and C. Miyamoto. Principles of treatment of malignant gliomas in adults: an overview. J. Neurovirol. 4(2):204–216 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. P. L. Ritger and N. A. Peppas. A simple equation for description of solute release 1. Fickian and non-Fickian release from nano-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controlled Release 5:23–36 (1987).

    Article  CAS  Google Scholar 

  38. J. Xie, J. C. M. Marijnissen, and C. H. Wang. Microparticles developed by electrohydrodynamic atomization (EHDA) for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Science and Engineering Research Council, A*STAR and National University of Singapore under the grant number R279-000-208-305. The authors thank Liang Kuang Lim, Lai Yeng Lee and Dr. Yong Hu for helpful discussion and technique support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hwa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Wang, CH. Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro . Pharm Res 23, 1817–1826 (2006). https://doi.org/10.1007/s11095-006-9036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9036-z

Key words

Navigation