Skip to main content

Advertisement

Log in

Wet Conversion of Methane and Carbon Dioxide in a DBD Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of water on the plasma assisted conversion of methane and carbon dioxide in a dielectric barrier discharge (DBD) plug flow reactor was studied. The plasma at atmospheric pressure was ignited by a power supply at a frequency of 13.56 MHz. Product formation was studied at a power range between 35 and 70 W. The concentrations of the three gases were altered and diluted with helium to 3 %. FTIR spectroscopy and mass spectroscopy were applied to analyze the inlet and the product streams. The main product of this process are hydrogen, carbon monoxide and ethane. Ethene, ethine, methanol and formaldehyde are generated beside the main products in this DBD in lower concentrations. The conversion of methane, the ratio of the synthesis gas components (n(H2):n(CO)), and the yield of oxygenated hydrocarbons and hydrogen increases by adding water. The total consumed energy reaches lower values for small amounts of water. Additional water does not influence the generated amount of C2 hydrocarbons and of CO, but decreases the carbon dioxide conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Angelidaki I, Ellegaard L, Kioer Ahring B (2003) Applications of the anaerobic digestion process. Adv Biochem Eng Biot 82:1–33

    CAS  Google Scholar 

  2. Hilkiah Igoni A, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energ 85:430–438

    Article  Google Scholar 

  3. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  4. Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617

    Article  CAS  Google Scholar 

  5. Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2010) CH4–CO2 reforming by plasma: challenges and opportunities. Prog Energ Combust 37:113–124

    Article  Google Scholar 

  6. Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K-H, Schmidt-Szałowski K (2010) Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Appl Catal B 94:19–26

    Article  CAS  Google Scholar 

  7. Istadi N, Amin AS (2006) Co-generation of synthesis gas and C2C hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: a review. Fuel 85:577–592

    Article  CAS  Google Scholar 

  8. Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke K-H (2012) Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P 32:565–582

    Article  CAS  Google Scholar 

  9. Rico VJ, Hueso JL, Cotrino J, González-Elipe AR (2010) Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol. J Phys Chem A 114:4009–4016

    Article  CAS  Google Scholar 

  10. Eliasson B, Liu CJ, Kogelschatz U (2000) Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39:1221–1227

    Article  CAS  Google Scholar 

  11. Liu C-J, Xue B, Eliasson B, He F, Li Y, Xu GH (2001) Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge. Plasmas Plasma Chem Plasma P 21:301–310

    Article  Google Scholar 

  12. Kroker T, Kolb T, Krawczyk K, Mlotek M, Schenk A, Gericke K-H (2010) Catalytic conversion of biogas in a fluidized bed reactor supported by a DBD. Front Appl Plasma Technol 3:69–73

    CAS  Google Scholar 

  13. Zhang Y-P, Li Y, Wang Y, Liu C-J, Eliasson B (2003) Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel Process Technol 83:101–109

    Article  CAS  Google Scholar 

  14. Mfopara A, Kirkpatrick MJ, Odic E (2009) Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor. Plasma Chem Plasma P 29:91–102

    Article  CAS  Google Scholar 

  15. Kolb T, Kroker T, Gericke K-H (2012) Conversion of biogas like mixtures to C2 hydrocarbon in a plug flow reactor supported by a DBD at atmospheric pressure. Vaccum. doi:10.1016/j.vacuum.2012.01.013

    Google Scholar 

  16. Kroker T (2010) Qualitative und Quantitative Produktanalyse der Katalytischen Konvertierung von Biogas in Plasmagestützten Rohrströmungsreaktoren. PHD Thesis TU Braunschweig

  17. Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2011) Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: effect of helium dilution and kinetic model. Plasma Chem Plasma P 31:315–325

    Article  CAS  Google Scholar 

  18. Drake GWF (2002) Progress in helium fine-structure calculations and the fine-structure constant. Can J Phys 80:1195–1212

    Article  CAS  Google Scholar 

  19. deB Darwent B (1970) Bond dissociation energies in simple molecules. NBSDS-NBS 31

  20. Wang Q, Yan BH, Jin Y, Cheng Y (2009) Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem Plasma P 29:217–228

    Article  Google Scholar 

  21. Liu CJ, Mallinson R, Lobban L (2009) Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. J Catal B 179:326–334

    Article  Google Scholar 

  22. Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds. J Phys Chem Ref Data 15:1087–1279

    Article  CAS  Google Scholar 

  23. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma P 23(2003):1–46

    Article  CAS  Google Scholar 

  24. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  25. Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) Progress in hydroformylation and carbonylation. J Mol Catal A 104:17–85

    Article  CAS  Google Scholar 

  26. Pasel J, Samsun RC, Schmitt D, Peters R, Stolten D (2005) J Power Sources 152:189–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is part of the framework of the European Research Area (ERA) Chemistry call. This work is financially supported by the Deutsche Forschungs-Gemeinschaft (DFG). Support by the IGSM Braunschweig is gratefully acknowledged. We acknowledge K. Krawczyk and M. Młotek for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, T., Kroker, T., Voigt, J.H. et al. Wet Conversion of Methane and Carbon Dioxide in a DBD Reactor. Plasma Chem Plasma Process 32, 1139–1155 (2012). https://doi.org/10.1007/s11090-012-9411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9411-y

Keywords

Navigation