Skip to main content
Log in

Thermodynamic and Transport Properties of Two-Temperature Nitrogen-Oxygen Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermodynamic and transport properties are computed for a 17 species model of nitrogen-oxygen plasma under different degrees of thermal non-equilibrium, pressures and volume ratios of component gases. In the computation electron temperatures range from 300 to 45,000 K, mole fractions range from 0.8 to 0.2, pressures range from 0.1 atmosphere to 5 atmospheres, and thermal nonequilibrium parameters (Te/Th) range from 1 to 20. It is assumed that all the electrons follow a temperature Te and the rest of the species in the plasma follow a temperature Th. Compositions are calculated using the two temperature Saha equation derived by van de Sanden et al. Updated energy level data from National Institute of Standards and Technology (NIST) and recently compiled collision integrals by Capitelli et al., have been used to obtain thermodynamic and transport properties. In the local thermodynamic equilibrium (LTE) regime, the results are compared with published data and an overall good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4,
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yun KS, Mason EA (1962) Phys Fluids 5:380

    Article  ADS  Google Scholar 

  2. Drellishak KS, Aeschliman DP, Cambel AB (1965) Phys Fluids 8:1590

    Article  ADS  Google Scholar 

  3. Bacri J, Raffanel S (1987) Plasma Chem Plasma Process 7:53

    Article  Google Scholar 

  4. Bacri J, Raffanel S (1989) Plasma Chem Plasma Process 9:133

    Article  Google Scholar 

  5. Gupta RN, Yos JM, Thompson RA, Lee KP (1990) NASA RP-1232

  6. Murphy AB (1995) Plasma Chem Plasma Process 15:279

    Article  MathSciNet  Google Scholar 

  7. Capitelli M, Celiberto R, Gorse C, Giordano D (1996) Plasma Chem Plasma Process 16:267S

    Article  Google Scholar 

  8. Aubreton J, Elchinger MF, Fauchais P (1998) Plasma Chem Plasma Process 18:1

    Article  Google Scholar 

  9. Capitelli M, Colonna G, Gorse C, D’Angola A (2000) Eur Phys J D 11:279

    Article  ADS  Google Scholar 

  10. Capitelli M, Gorse C, Longo S (2000) J Thermo Phys Heat Transfer 14:259

    Article  Google Scholar 

  11. Bruno D, Capitelli M, Dangola A (2003) AIAA Plasmadynamics and Lasers Conference AIAA-2003-4039

  12. Wright MJ, Bose D, Palmer GE, Levin E (2005) AIAA J 43:2558

    Article  ADS  Google Scholar 

  13. Couch RW Jr, Sanders NA (1997) Lifeng Luo, John Sobr, Plasma arc cutting process and apparatus using an oxygen-rich gas shield. US Patent 5695662

  14. Morsley ME, Pelletier D, Proulx P, Delannoy Y (2005) Thermodynamics and transport properties of air. Internal report. University of Sherbrooke, Sherbrooke, Canada

  15. Morsli ME, Proulx P (2007) J Phys D: Appl Phys 40:380

    Article  ADS  Google Scholar 

  16. Nemchinsky VA, Severance WS (2006) J Phys D: Appl Phys 39:R423

    Article  ADS  Google Scholar 

  17. Ghorui S, Heberlein JVH, Pfender E (2007) J Phys D: Appl Phys 40:1966–1976

    Article  ADS  Google Scholar 

  18. Moore CE (1949) Atomic energy levels, Circular 467, vol I. US National Bureau of Standards, Washington, DC

  19. Ralchenko Y, Kramida AE, Reader J, NIST ASD Team (2008) NIST atomic spectra database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3 [date accessed]. National Institute of Standards and Technology, Gaithersburg, MD

  20. Herzberg G (1939) Molecular spectra and molecular structure I. Diatomic molecules. Prentice-Hall Inc., New York

    Google Scholar 

  21. Huber KP, Herzberg G (1979) Molecular Spectra and Molecular Structure: IV Constants of Diatomic Molecules. Van Nostrand Reinhold Co, New York

    Google Scholar 

  22. van de Sanden MCM, Schram PPJM, Peeters AG, van der Mullen JAM, Kroesen GMW (1989) Phys Rev A 40:5273

    Article  ADS  Google Scholar 

  23. Eucken A (1913) Z Phys 14:324–332

    Google Scholar 

  24. Smirnov BM (1976) Negative ions. McGraw-Hill, New York

    Google Scholar 

  25. Stull DR, Prophet H (1971) JANAF Thermochemical Tables, 2nd edn. National Bureau of Standards, Washington, DC

    Google Scholar 

  26. Rosen B (1970) Spectroscopic data relative to diatomic molecules. Pergamon Press, Oxford

    Google Scholar 

  27. Mayer JE, Mayer MG (1940) Statistical Mechanics. Wiley, London

    MATH  Google Scholar 

  28. Kovitya P (1985) IEEE Trans Plasma Sci PS-13:587

    Article  ADS  Google Scholar 

  29. Hirschfelder JO, Curtis CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  30. Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases, Cambridge University Press, Cambridge

    Google Scholar 

  31. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland, London

    Google Scholar 

  32. Devoto RS (1966) Phys Fluis 9:1230

    Article  ADS  Google Scholar 

  33. Devoto RS (1967) Phys Fluids 10:2105

    Article  ADS  Google Scholar 

  34. Devoto RS (1973) Phys Fluids 16:616

    Article  ADS  Google Scholar 

  35. Ramshaw JD (1993) J Non-Equilib Thermodyn 18:121

    MATH  Google Scholar 

  36. Ramshaw JD (1996) J Non-Equilib Thermodyn 21:233

    Article  MATH  Google Scholar 

  37. Leonas VB (1973) Soviet Physics—Uspekhi 15:266

    Article  ADS  Google Scholar 

  38. Capitelli M, Ficocelli E (1972) J Phys B 5:2066

    Article  ADS  Google Scholar 

  39. Capitelli M, Devoto RS (1967) Phys Fluids 16:1835

    Article  ADS  Google Scholar 

  40. Belyaev YN, Brezhnev BG, Erastov EM (1968) Soviet Physics—JETP 27:924

    ADS  Google Scholar 

  41. Beebe NHF, Thulstrup EH, Andersen A (1976) J Chem Phys 64:2080

    Article  ADS  Google Scholar 

  42. Rutherford JA, Vroom DA (1974) J Chem Phys 61:2514

    Article  ADS  Google Scholar 

  43. Stallcop JR, Partridge H, Levin E (1991) Chem Phys Lett 184:505

    Article  ADS  Google Scholar 

  44. Phelps AV (1987) In: Pitchford LC, McKoy BV, Chutiyan A, Traymar S (eds) Swarm studies and inelastic electron-molecule collisions. Springer-Verlag, New York, p 127

    Google Scholar 

  45. Chandra N, Temkin A (1976) NASA TN D-8347

  46. Thomas LD, Nesbet RK (1975) Phys Rev A 12:2369

    Article  ADS  Google Scholar 

  47. Blaha M, Davis J (1975) Phys Rev A 12:2319

    Article  ADS  Google Scholar 

  48. Thomson DG (1971) J Phys B 4:468

    Article  ADS  MathSciNet  Google Scholar 

  49. Liboff RI (1959) Phys Fluid 2:40

    Article  MATH  ADS  Google Scholar 

  50. Elchinger MF, Pateyron B, Delluc G, Fauchais P (1989) In: Proceedings of the ninth international symposium on plasma chemistry, Pugnochius, Italy, vol 1. International Union of Pure and Applied Chemistry, Oxford, UK, p 127

  51. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York, p 413

    Google Scholar 

  52. Yos JM (1963) Transport properties of nitrogen, hydrogen, oxygen, and air at 30,000 K, Technical Memorandum RAD-TM-63-7. AVCO Corporation, Wilmington, Massachusetts

  53. Bruno D, Capitelli M, Catalfamo C, Laricchiuta A (2007) Phys Plasmas 14:072308

    Article  ADS  Google Scholar 

  54. Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Phys Plasmas 14:022303

    Article  ADS  Google Scholar 

  55. Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Phys Rev A 74:062707

    Article  ADS  Google Scholar 

  56. Capitelli M, Ficocelli E, Molinari E (1971) Z Naturforschung A 26:672

    ADS  Google Scholar 

  57. De Palma F, Casavola AR, Capitelli M (2006) J Thermophys Heat Transfer 20:921

    Article  Google Scholar 

  58. Giordano D, Capitelli M (2001) Phys Rev E 65:016401

    Article  ADS  Google Scholar 

  59. Rat V, Aubreton J, Elchinger MF, Fauchais P, Murphy AB (2002) Phys Rev E 66:056407

    Article  ADS  Google Scholar 

  60. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Eur Phys J D 46:129

    Article  ADS  Google Scholar 

  61. Ghorui S, Heberlein JVR, Pfender E (2007) Plasma Chem Plasma Process 27:267

    Article  Google Scholar 

  62. Chen X, Li HP (2003) Int J Heat Mass Trans 46:1443

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support for this study from Hypertherm, Inc. Discussions with Dr. Jon Lindsay, Hypertherm, contributed to this project and are acknowledged. A grant from the Minnesota Supercomputing Institute is gratefully acknowledged as well. One of the authors (S. Ghorui) is thankful to Department of Atomic Energy, India, for grant of leave for post-doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghorui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorui, S., Heberlein, J.V.R. & Pfender, E. Thermodynamic and Transport Properties of Two-Temperature Nitrogen-Oxygen Plasma. Plasma Chem Plasma Process 28, 553–582 (2008). https://doi.org/10.1007/s11090-008-9141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9141-3

Keywords

Navigation