Skip to main content
Log in

Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Through a detailed electromagnetic analysis we investigate the characteristics of liquid crystal infiltrated photonic crystal Fibers guiding by the Photonic Bandgap effect. The analysis, carried out using the Finite Element Method and including also material dispersion effects, puts into evidence particular spectral features related to the so-called splay alignment of the molecules constituting the liquid crystal, the so called mesogens. Control of these features is of use in the design of new devices for sensing or telecommunication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alkeskjold, T.T.: Optical devices based on liquid crystal photonic bandgap fibers. Ph.D. Thesis, Research Center COM, Technical University of Denmark (2005)

  • Alkeskjold T.T., Laegsgaard J., Hermann D.S., Anawati A., Broeng J., Li J., Wu S.T. and Bjarklev A. (2004). All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 12: 5857–5871

    Article  ADS  Google Scholar 

  • Birks T.A., Knight J.C., Mangan B.J. and Russel P.St.J. (2001). Photonic crystal fibers: an endless variety. IEICE Trans. Electron. E84-C: 585–592

    Google Scholar 

  • Bjarklev, A., Broeng, J., Sanchez Bjarklev, A.: Photonic Crystal Fibres. Kluwer Academy Publishers (2003)

  • Broeng J., Mogilevstev D., Barkou S.E. and Bjarklev A. (1999). Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5: 305–330

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: Liquid Crystals. Cambbridge University Press (1977)

  • Cristiani I., Liberale C., Degiorgio V., Tartarini G. and Bassi P. (2001). Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5 μm-band cascaded wavelength conversion. Opt. Comm. 187: 263–270

    Article  ADS  Google Scholar 

  • Ghatak, A., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press (1998)

  • Haakestad M.W., Alkeskjold T.T., Nielsen M.D., Scolari L., Riishede J., Engan H.E. and Bjarklev A. (2005). Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17: 819–821

    Article  ADS  Google Scholar 

  • Hayata K., Miura K. and Koshiba M. (1989). Full vectorial finite element formalism for lossy anisotropic waveguides. IEEE Trans. Microwave Theory Tech. 37(5): 875–883

    Article  ADS  Google Scholar 

  • Hernàndez-Figueroa H.E., Fernàndez F.A., Lu Y. and Davies J.B. (1995). Vectorial finite element modelling of 2D leaky waveguides. IEEE Trans. Magnet. 31: 1710–1713

    Article  ADS  Google Scholar 

  • Larsen T.T., Bjarklev A., Hermann D.S. and Broeng J. (2003). Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 11: 2589–2596

    Article  ADS  Google Scholar 

  • Li J. and Wu S.T. (2004). Extended Cauchy Equations for the refractive indices of liquid crystals. J. Appl. Phys. 96: 19–24

    Article  ADS  Google Scholar 

  • Litchinitser N.M., Dunn S.C., Steinwurzel P.E., Eggleton B.J., White T.P., McPhedran R.C. and Martijin de Sterke C. (2004). Application of an ARROW model for designing tunable photonic devices. Opt. Exp. 12: 1540–1550

    Article  ADS  Google Scholar 

  • MIT Photonic-Bands (MPB) package: http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

  • Rahman B.M.A., Kabir A.K.M.S., Rajarajan M., Grattan K.T.V. and Rakocevic V. (2006). Birefringence study of photonic crystal fibers by using the full-vectorial finite element method. Appl. Phys. B 84: 75–82

    Article  ADS  Google Scholar 

  • Saitoh K. and Koshiba M. (2003). Single-polarization single-mode photonic crystal fibers. IEEE Phot. Techn. Lett. 15: 1384–1386

    Article  ADS  Google Scholar 

  • Scolari L., Alkeskjold T.T., Hermann D.S., Anawathi A., Nielsen M.D., Bjarklev A., Riishede J. and Bassi P. (2005). Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Opt. Expr. 13: 7483–7496

    Article  ADS  Google Scholar 

  • Tartarini G. (2000). Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides. Opt. Quant. Elect. 32: 719–734

    Article  Google Scholar 

  • Tartarini G., Pansera M., Alkeskjold T.T., Bjarklev A. and Bassi P. (2007). Polarization properties of elliptical hole liquid crystal photonic bangap fibres. IEEE J. Lightw. Technol. 25: 2522–2530

    Article  ADS  Google Scholar 

  • Tartarini G., Stolte R. and Renner H. (2005). Experimental and theoretical of leaky extraordinary modes in negative uniaxial channel waveguides. Opt. Comm. 253: 109–117

    Article  ADS  Google Scholar 

  • Wolinski T.R., Szaniawska K., Ertman S., Lesiak P., Domanski A.W., Dabrowski R., Nowinowski- Kruszelnicki E. and Wojcik J. (2006). Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres. Meas. Sci. Technol. 17: 985–991

    Article  ADS  Google Scholar 

  • Zografopoulos D.C., Kriezis E.E. and Tsiboukis T.D. (2006). Tunable highly birefringent bandgap-guiding liquid- crystal microstructured fibers. IEEE J. Lightw. Technol. 24: 3427–3432

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Tartarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tartarini, G., Alkeskjold, T.T., Scolari, L. et al. Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens. Opt Quant Electron 39, 913–925 (2007). https://doi.org/10.1007/s11082-007-9132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9132-2

Keywords

Navigation