Skip to main content
Log in

Costlets: A Generalized Approach to Cost Functions for Automated Optimization of IMRT Treatment Plans

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present the creation and use of a generalized cost function methodology based on costlets for automated optimization for conformal and intensity modulated radiotherapy treatment plans. In our approach, cost functions are created by combining clinically relevant “costlets”. Each costlet is created by the user, using an “evaluator” of the plan or dose distribution which is incorporated into a function or “modifier” to create an individual costlet. Dose statistics, dose-volume points, biological model results, non-dosimetric parameters, and any other information can be converted into a costlet. A wide variety of different types of costlets can be used concurrently. Individual costlet changes affect not only the results for that structure, but also all the other structures in the plan (e.g., a change in a normal tissue costlet can have large effects on target volume results as well as the normal tissue). Effective cost functions can be created from combinations of dose-based costlets, dose-volume costlets, biological model costlets, and other parameters. Generalized cost functions based on costlets have been demonstrated, and show potential for allowing input of numerous clinical issues into the optimization process, thereby helping to achieve clinically useful optimized plans. In this paper, we describe and illustrate the use of the costlets in an automated planning system developed and used clinically at the University of Michigan Medical Center. We place particular emphasis on the flexibility of the system, and its ability to discover a variety of plans making various trade-offs between clinical goals of the treatment that may be difficult to meet simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A. Agren, A. Brahme, and I. Turesson, “Optimization of uncomplicated control for head and neck tumors,” International Journal of Radiation Oncology Biology Physics vol. 19, pp. 1077–1085, 1990.

    Google Scholar 

  • M. Alber and F. Nusslin, “Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery,” Physics in Medicine and Biology vol. 46, pp. 3229–39, 2001.

    Article  PubMed  Google Scholar 

  • M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, 2nd ed (Wiley, 1993).

  • T. Bortfeld, A. L. Boyer, W. Schlegel, D. L. Kahler, and T. J. Waldron, “Realization and verification of 3-dimensional conformal radiotherapy with modulated fields,” International Journal of Radiation Oncology Biology Physics vol. 30, pp. 899-908, 1994.

    Google Scholar 

  • T. Bortfeld and W. Schlegel, “Optimization of beam orientations in radiation-therapy—some theoretical considerations,” Physics in Medicine and Biology vol. 38, pp. 291–304, 1993.

    Article  PubMed  Google Scholar 

  • A. L. Boyer, P. Geis, W. Grant, and M. Carol, “Modulated beam conformal therapy for head and neck tumors,” International Journal of Radiation Oncology Biology Physics vol. 39, pp. 227–236, 1997.

    Article  Google Scholar 

  • A. Brahme, “Design principles and clinical possibilities with a new generation of radiation therapy equipment. A review,” Acta Oncologica, vol. 26, pp. 403–412, 1987.

    PubMed  Google Scholar 

  • A. Brahme, “Optimization of radiation therapy and the development of multileaf collimation,” International Journal of Radiation Oncology Biology Physics vol. 25, pp. 373–375, 1993.

    Google Scholar 

  • A. Brahme, “Optimization of Stationary and Moving Beam Radiation-Therapy Techniques,” Radiotherapy and Oncology vol. 12, pp. 129–140, 1988.

    Article  PubMed  Google Scholar 

  • A. Brahme and A. K. Agren, “Optimal Dose Distribution for Eradication of Heterogeneous Tumors,” Acta Oncologica vol. 26, pp. 377–385, 1987.

    PubMed  Google Scholar 

  • C. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate,” International Journal of Radiation Oncology, Biology, Physics vol. 39, pp. 863–873, 1997.

    Google Scholar 

  • E. B. Butler, B. S. Teh, W. H. Grant, B. M. Uhl, R. B. Kuppersmith, J. K. Chiu, D. T. Donovan, and S. Y. Woo, “Smart boost: A new accelerated fractionation schedule for the treatment of head and neck cancer with intensity modulated radiotherapy,” International Journal of Radiation Oncology Biology Physics vol. 45, pp. 21–32, 1999.

    Article  Google Scholar 

  • R. H. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm for bound constrained optimization,” SIAM Journal on Scientific and Statistical Computing vol. 6, pp. 1190–1208, 1995.

    Article  Google Scholar 

  • M. Carol, “Integrated 3-D conformal multivane intensity modulation delivery system for radiotherapy,” in Proceedings of the XIth International Conference on the Use of Computers in Radiation Therapy, A. Hounsell, J. Wilkinson, and P. Williams, Eds. Manchester, UK: Medical Physics, pp. 172, 1994.

  • M. P. Carol, “PeacockTM: A system for planning and rotational delivery of intensity-modulated fields,” International Journal of Imaging Systems and Technology vol. 6, pp. 56–61, 1995.

    Google Scholar 

  • K. S. C. Chao, D. Low, C. A. Perez, and J. A. Purdy, “Intensity-modulated radiation therapy in head and neck cancer: The Mallincrodt experience.,” Int. J. Cancer (Rad. Onc. Invest.) vol. 90, pp. 92–103, 2000.

    Article  Google Scholar 

  • E. M. Damen, M. J. Brugmans, A. van der Horst, L. Bos, J. V. Lebesque, B. J. Mijnheer, D. L. McShan DL, B. A. Fraass, and M. L. Kessler, “Planning, computer optimization, and dosimetric verification of a segmented irradiation technique for prostate cancer,” International Journal of Radiation Oncology Biology Physics vol. 49, pp. 1183–95, 2001.

    Article  Google Scholar 

  • C. De Wagter, C. O. Colle, L. G. Fortan, B. B. Van Duyse, D. L. Van den Berge, and W. J. De Neve, “3D conformal intensity-modulated radiotherapy planning: Interactive optimization by constrained matrix inversion,” Radiotherapy and Oncology vol. 47, pp. 69–76, 1998.

    Article  PubMed  Google Scholar 

  • A. Eisbruch, L. H. Marsh, M. K. Martel, J. A. Ship, R. Ten Haken, A. T. Pu, B. A. Fraass, and A. S. Lichter, “Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: Assessment of target coverage and noninvolved tissue sparing,” International Journal of Radiation Oncology Biology Physics vol. 41, pp. 559–568, 1998.

    Article  Google Scholar 

  • A. Eisbruch, R. K. Ten Haken, H. M. Kim, L. H. Marsh, and J. A. Ship, “Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer,” International Journal of Radiation Oncology Biology Physics vol. 45, pp. 577–587, 1999.

    Article  Google Scholar 

  • M. C. Ferris, R. R. Meyer, and W. D’Souza, “Radiation treatment planning: Mixed integer programming formulations and approaches,” Computer Sciences Department, University of Wisconsin, Madison, Optimization Technical Report 02–08, 2002.

  • B. A. Fraass and D. L. McShan, “3-D treatment planning: I Overview of a clinical planning system,” in The Use of Computers in Radiation Therapy, I. A. D. Bruinvis, F. H. van_der_Giessen, H. J. van_Kleffens, and F. W. Wittkamper, Eds. North-Holland: Elsevier Science Publishers BV, 1987, pp. 273-276, 1987a.

  • B. A. Fraass, D. L. McShan, R. K. TenHaken, and K. M. Hutchins, “3-D treatment planning: V. A Fast 3-D photon calculation model,” in The Use of Computers in Radiation Therapy, I. A. D. Bruinvis, F. H. van_der_Giessen, H. J. van_Kleffens, and F. W. Wittkamper, Eds. North-Holland: Elsevier Science Publishers BV, pp. 521-525, 1987b.

  • B. A. Fraass, D. L. McShan, and M. L. Kessler, “Dose-Based Conformal Field Shaping Using Automated Optimization,” in Proceedings of the XIIIth International Conference On the Use of Computers In Radiotherapy, Heidelberg, Germany: T. Bortfeld and W. Schlegel, Eds., pp. 32–35, 2000.

  • B. A. Fraass, D. L. McShan, and K. J. Weeks, “3-D treatment planning: III. Complete Beam’s-Eye-View planning capabilities,” in The Use of Computers in Radiation Therapy, I. A. D. Bruinvis, F. H. van_der_Giessen, H. J. van_Kleffens, and F. W. Wittkamper, Eds., North-Holland: Elsevier Science Publishers BV, pp. 193–196, 1987.

  • P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Journal on Optimization vol. 12, pp. 979–1006, 2002.

    Article  Google Scholar 

  • M. Goitein, et al., “Evaluation of treatment planning for particle beam radiotherapy: report of the working groups,” Radiotherapy Development Branch, Radiation Research Program, Division of Cancer Treatment, National Cancer Institute, Bethesda MD, 1987.

  • D. Greene and P. C. Williams, Linear Accelerators for Radiation Therapy, Series in Medical Physics and Biomedical Engineering, pp. 194, 1985.

  • H. W. Hamacher and K. H. Kufer, “Inverse radiation therapy planning—a multiple objective optimization approach,” Discrete Applied Mathematics vol. 118, pp. 145–161, 2002.

    Article  MathSciNet  Google Scholar 

  • A. Holder, “Designing radiotherapy plans with elastic constraints and interior point methods,” Health Care and Management Science vol. 6, pp. 5–16, 2003.

    Article  Google Scholar 

  • A. Holder, “Partitioning multiple objective optimal solutions with applications in radiotherapy design,” Trinity University, San Antonio, Mathematics Technical Report 54, 2001.

  • T. Holmes, T. Mackie, D. Simpkin, and P. Reckwerdt, “A unified approach to the optimization of brachytherapy and external beam therapy,” International Journal of Radiation Oncology, Biology, Physics vol. 20, pp. 859–873, 1991.

    Google Scholar 

  • T. Holmes and T. R. Mackie, “A filtered backprojection dose calculation method for inverse planning,” Medical Physics vol. 21, pp. 303–313, 1994.

    Article  PubMed  Google Scholar 

  • T. W. Holmes, T. R. Mackie, and P. Reckwerdt, “An iterative filtered backprojection inverse treatment planning algorithm for tomotherapy,” International Journal of Radiation Oncology, Biology, Physics vol. 32, pp. 1215–1225, 1995.

    Google Scholar 

  • ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy, International Commission on Radiation Units and Measurements, 7910 Woodmont Avenue, Bethesda, Maryland 20814, USA, 1993.

  • P. Kallman, B. Lind, and A. Brahme, “An algorithm for maximizing the probability of complication-free tumour control on radiation therapy,” PMB vol. 37, pp. 871–890, 1992.

    Article  Google Scholar 

  • M. L. Kessler, S. Pitluck, P. Petti, and J. R. Castro, “Integration of Multimodality Imaging Data for Radiotherapy Treatment Planning,” International Journal of Radiation Oncology Biology Physics vol. 21, pp. 1653–1667, 1991.

    Google Scholar 

  • E. A. Krueger, B. A. Fraass, D. L. McShan, R. Marsh, and L. J. Pierce, “Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy,” International Journal of Radiation Oncology Biology Physics vol. 56, pp. 1023–37, 2003.

    Article  Google Scholar 

  • G. J. Kutcher and C. Burman, “Calculation of Complication Probability Factors for Non-Uniform Normal Tissue Irradiation—the Effective Volume Method,” International Journal of Radiation Oncology Biology Physics vol. 16, pp. 1623–1630, 1989.

    Google Scholar 

  • K. H. Küfer, A. Scherrer, M. Monz, F. Alonso, H. Trinkaus, T. Bortfeld, and C. Thieke, “Intensity-modulated radiotherapy—a large scale multi-criteria programming problem,” OR Spectrum vol. 25, pp. 223–249, 2003.

    Article  Google Scholar 

  • M. Langer and J. Leong, “Optimization of Beam Weights under Dose-Volume Restrictions,” International Journal of Radiation Oncology Biology Physics vol. 13, pp. 1255–1260, 1987.

    Google Scholar 

  • M. Langer, S. S. Morrill, and R. Lane, “A test of the claim that plan rankings are determined by relative complication and tumor-control probabilities,” International Journal of Radiation Oncology Biology Physics vol. 41, pp. 451–457, 1998.

    Article  Google Scholar 

  • E. K. Lee, T. Fox, and I. Crocker, “Integer programming applied to intensity-modulated radiation therapy treatment planning,” Annals of Operations Research vol. 119, pp. 165–181, 2003.

    Article  Google Scholar 

  • J. H. Lim, M. C. Ferris, S. J. Wright, D. M. Shepard, and M. A. Earl, “An optimization framework for conformal radiation treatment planning,” Computer Sciences Department, University of Wisconsin, Madison, Optimization Technical Report 0210, 2002.

  • J. T. Lyman, “Complication probability as assessed from dose volume histograms,” Rad Res vol. 104, pp. 5–13, 1985.

    Google Scholar 

  • J. T. Lyman, “Normal tissue complication probabilities—variable dose per fraction,” International Journal of Radiation Oncology Biology Physics vol. 22, pp. 247–250, 1992.

    Google Scholar 

  • J. T. Lyman and A. B. Wolbarst, “Optimization of radiation therapy III: A method of assessing complication probabilities from dose volume histograms,” International Journal of Radiation Oncology Biology Physics vol. 13, pp. 103–109, 1987.

    Google Scholar 

  • T. R. Mackie, J. W. Scrimger, and J. J. Battista, “A convolution method of calculating dose for 15-MV X-rays,” Medical Physics vol. 12, pp. 188–196, 1985.

    Article  PubMed  Google Scholar 

  • D. L. McShan and B. A. Fraass, “3-D treatment planning: II. Integration of gray scale images and solid surface graphics,” in The Use of Computers in Radiation Therapy, I. A. D. Bruinvis, F. H. van_der_Giessen, H. J. van_Kleffens, and F. W. Wittkamper, Eds. North-Holland: Elsevier Science Publishers BV, pp. 41–44, 1987.

  • D. L. McShan, B. A. Fraass, and A. S. Lichter, “Full integration of the beam’s eye view concept into computerized treatment planning,” International Journal of Radiation Oncology Biology Physics vol. 18, pp. 1485–1494, 1990.

    Google Scholar 

  • G Meedt, M Alber, and F Nusslin, “Non-coplanar beam direction optimization for intensity-modulated radiotherapy,” Physics in Medicine and Biology vol. 48, pp. 2999–3019, 2003.

    Article  PubMed  Google Scholar 

  • C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, et al., “Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin plate spline warped geometric deformations,” Medical Image Analysis vol. 1, no. 3, pp. 195–206, 1997.

    Article  PubMed  Google Scholar 

  • D. Michalski, Y. Xiao, Y. Censor, and J. M. Galvin, “The dose-volume constraint satisfaction problem for inverse treatment planning with simultaneous subgradient projection method,” Medical Physics vol. 30, pp. 1334–1334, 2003.

    Google Scholar 

  • R. Mohan, G. S. Mageras, B. Baldwin, L. J. Brewster, G. J. Kutcher, S. Leibel, C. M. Burman, C. C. Ling, and Z. Fuks, “Clinically relevant optimization of 3-D conformal treatments,” Medical Physics vol. 19, pp. 933–944, 1992.

    Article  PubMed  Google Scholar 

  • R. Mohan, X. Wang, and A. Jackson, “Optimization of 3-D conformal radiation treatment plans,” Frontiers of Radiation Therapy & Oncology vol. 29, pp. 86–103, 1996.

    Google Scholar 

  • R. Mohan, X. H. Wang, A. Jackson, T. Bortfeld, A. L. Boyer, G. J. Kutcher, S. A. Leibel, Z. Fuks, and C. C. Ling, “The potential and limitations of the Inverse Radiotherapy Technique,” Radiotherapy and Oncology vol. 32, pp. 232–248, 1994.

    Article  PubMed  Google Scholar 

  • A. Niemierko, “Reporting and analyzing dose distributions: The concept of equivalent uniform dose,” Medical Physics vol. 24, pp. 103–110, 1997.

    Article  PubMed  Google Scholar 

  • A. Niemierko and M. Goitein, “Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor,” Radiotherapy and Oncology vol. 29, pp. 140–147, 1993.

    Article  PubMed  Google Scholar 

  • M. Oldham, A. Neal, and S. Webb, “A comparison of conventional forward planning with inverse planning for 3-D conformal radiotherapy of the prostate (Vol 35, Pg 248, 1995),” Radiotherapy and Oncology vol. 37, pp. 171–172, 1995.

    Article  Google Scholar 

  • F. Preciado-Walters, M. Langer, R. Rardin, and V. Thai, “A coupled column generation, mixedinteger approach to optimal planning of intensity modulated radiation therapy for cancer,” Mathematical Programming, 2004.

  • W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes”, 2nd ed., Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  • A. T. Redpath, B. L. Vickery, and D. H. Wright, “New technique for radiotherapy planning using Quadratic programming,” Physics in Medicine and Biology vol. 21, pp. 781–791, 1976.

    Article  PubMed  Google Scholar 

  • H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, A. Kumar, and J. G. Li, “A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning,” Physics in Medicine and Biology vol. 48, pp. 3521–3542, 2003.

    Article  PubMed  Google Scholar 

  • C. G. Rowbottom, C. M., Nutting, and S. Webb., “Beam-orientation optimization of intensity-modulated radiotherapy: Clinical application to parotid gland tumours,” Radiotherapy and Oncology vol. 59, pp. 169–77, 2001.

    Article  PubMed  Google Scholar 

  • Y. Seppenwoolde, M. Engelsman, K. De Jaeger, S. H. Muller, P. Baas, J. S. A. Belderbos, L. J. Boersma, D. L. McShan, B. A. Fraass, M. L. Kessler, and J. V. Lebesque, “Optimizing radiation treatment plans for lung cancer using functional information,” Radiotherapy and Oncology vol. 63, pp. 165–77, 2002.

    Article  PubMed  Google Scholar 

  • D. M. Shepard, M. C. Ferris, G. H. Olivera, and T. R. Mackie, “Optimizing the delivery of radiation therapy to cancer patients,” Siam Review vol. 41, pp. 721–744, 1999.

    Google Scholar 

  • S. Sodertrom and A. Brahme, “Optimization of the Dose Delivery in a Few Field Techniques using Radiobiological Objective Functions,” Medical Physics vol. 20, pp. 1201–1210, 1993.

    Article  PubMed  Google Scholar 

  • S. V. Spirou and C. S. Chui, “A gradient inverse planning algorithm with dose-volume constraints,” Medical Physics vol. 25, pp. 321–333, 1998.

    Article  PubMed  Google Scholar 

  • H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters A vol. 122, pp. 157–162, 1987.

    Article  Google Scholar 

  • R. K. Tenhaken, A. F. Thornton, H. M. Sandler, M. L. Lavigne, D. J. Quint, B. A. Fraass, M. L. Kessler, and D. L. Meshan, “A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of Brain-Tumors,” Radiotherapy and Oncology vol. 25, pp. 121–133, 1992.

    Article  PubMed  Google Scholar 

  • K. Vineberg, B. A. Fraass, M. L. Kessler, D. L. McShan, and A. Eisbruch, “Parotid sparing without sacrificing target dose uniformity using optimized beamlet IMRT,” presented at American Society of Therapeutic Radiology and Oncology, Boston MA, 2000.

  • K. A. Vineberg, A. Eisbruch, M. M. Coselmon, D. L. McShan, M. L. Kessler, and B. A. Fraass, “Is uniform target dose possible in IMRT plans in the head and neck?,” International Journal of Radiation Oncology Biology Physics vol. 52, pp. 1159–1172, 2002.

    Article  Google Scholar 

  • K. A. Vineberg, M. K. Martel, M. L. Kessler, D. L. McShan, J. J. Kim, H. S. Sandler, and B. A. Fraass, “Dose Escalation of Brain Tumors to 100+ Gy using automated IMRT optimization,” International Journal of Radiation Oncology Biology Physics vol. 45, pp. 270, 1999.

    Article  Google Scholar 

  • X. H. Wang, R. Mohan, A. Jackson, S. A. Leibel, Z. Fuks, and C. C. Ling, “Optimization of intensity-modulated 3D conformal treatment plans based on biological indices,” Radiotherapy & Oncology vol. 37, pp. 140–152, 1995.

    Google Scholar 

  • S. Webb, “Optimisation of conformal radiation therapy dose distributions by simulated annealing,” Physics in Medicine and Biology vol. 34, pp. 1349–1370, 1989.

    Article  PubMed  Google Scholar 

  • S. Webb, “Optimization by simulated annealing of 3-Dimensional conformal treatment planning for radiation-fields defined by a Multileaf Collimator,” Physics in Medicine and Biology vol. 36, pp. 1201–1226, 1991.

    Article  PubMed  Google Scholar 

  • S. Webb, The Physics of Conformal Radiotherapy, Advances in Technology. Bristol: IOP Publisher Ltd, 1997.

    Google Scholar 

  • Q. Wu, R. Mohan, A. Niemierko A, and R. Schmidt-Ullrich, “Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose,” International Journal of Radiation Oncology Biology Physics vol. 52, pp. 224–35, 2002.

    Article  Google Scholar 

  • Q. Wu and R. Mohan, “Algorithms and functionality of an intensity modulated radiotherapy optimization system,” Medical Physics vol. 27, pp. 701–11, 2000.

    Article  PubMed  Google Scholar 

  • Y. Xiao, D. Michalski, J. M. Galvin, and Y. Censor, “The least-intensity feasible solution for aperture-based inverse planning in radiation therapy,” Annals of Operations Research vol. 119, pp. 183–203, 2003.

    Article  Google Scholar 

  • L. Xing L, J.G. Li, S. Donaldson S, Q. T. Le, and A. L. Boyer, “Optimization of importance factors in inverse planning,” Physics in Medicine and Biology vol. 44, pp. 2525–36, 1999.

    Article  PubMed  Google Scholar 

  • D. Yuret, “From genetic algorithms to efficient optimization,” Technical Report 1569, MIT AI Laboratory, 1994.

  • D. Yuret and M. de la Maza, “Dynamic hill climbing: Overcoming the limitations of optimization techniques,” In Second Turkish Symposium on Artificial Intelligence and Artificial Neural Networks, pp. 208–212, 1993.

  • C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Transactions on Mathematical Software vol. 23, pp. 550–560, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, M.L., Mcshan, D.L., Epelman, M.A. et al. Costlets: A Generalized Approach to Cost Functions for Automated Optimization of IMRT Treatment Plans. Optim Eng 6, 421–448 (2005). https://doi.org/10.1007/s11081-005-2066-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-005-2066-2

Keywords

Navigation