Skip to main content
Log in

Strategies for spectrum slicing based on restarted Lanczos methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the context of symmetric-definite generalized eigenvalue problems, it is often required to compute all eigenvalues contained in a prescribed interval. For large-scale problems, the method of choice is the so-called spectrum slicing technique: a shift-and-invert Lanczos method combined with a dynamic shift selection that sweeps the interval in a smart way. This kind of strategies were proposed initially in the context of unrestarted Lanczos methods, back in the 1990’s. We propose variations that try to incorporate recent developments in the field of Krylov methods, including thick restarting in the Lanczos solver and a rational Krylov update when moving from one shift to the next. We discuss a parallel implementation in the SLEPc library and provide performance results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amestoy, P.R, Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)

    Article  MATH  Google Scholar 

  2. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011)

  3. Ericsson, T., Ruhe, A.: The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comput. 35(152), 1251–1268 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Grimes, R.G., Lewis, J.G., Simon, H.D.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15(1), 228–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33(7–8), 521–540 (2007)

    Article  MathSciNet  Google Scholar 

  7. Marques, O.A.: BLZPACK: description and user’s guide. Tech. Rep. TR/PA/95/30, CERFACS, Toulouse, France (1995)

  8. Meerbergen, K.: Changing poles in the rational Lanczos method for the Hermitian eigenvalue problem. Numer. Linear Algebra Appl. 8(1), 33–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Meerbergen, K., Scott, J.: The design of a block rational Lanczos code with partial reorthogonalization and implicit restarting. Tech. Rep. RAL-TR-2000-011, Rutherford Appleton Laboratory (2000)

  10. Nour-Omid, B., Parlett, B.N., Ericsson, T., Jensen, P.S.: How to implement the spectral transformation. Math. Comput. 48(178), 663–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Olsson, K.H.A., Ruhe, A.: Rational Krylov for eigenvalue computation and model order reduction. BIT Numer. Math. 46, 99–111 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruhe, A.: Rational Krylov subspace method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Society for Industrial and Applied Mathematics, pp. 246–249. Philadelphia (2000)

  14. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vidal, AM., Garcia, V.M., Alonso, P., Bernabeu, M.O.: Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods. J. Parallel Distrib. Comput. 68(8), 1113–1121 (2008)

    Article  Google Scholar 

  17. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, H., Smith, B., Sternberg, M., Zapol, P.: SIPs: Shift-and-invert parallel spectral transformations. ACM Trans. Math. Softw. 33(2), 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Roman.

Additional information

This work was supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2009-07519.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, C., Roman, J.E. Strategies for spectrum slicing based on restarted Lanczos methods. Numer Algor 60, 279–295 (2012). https://doi.org/10.1007/s11075-012-9564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9564-z

Keywords

Navigation