Skip to main content
Log in

Numerical solutions of index-1 differential algebraic equations can be computed in polynomial time

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The cost of solving an initial value problem for index-1 differential algebraic equations to accuracy ɛ is polynomial in ln(1/ɛ). This cost is obtained for an algorithm based on the Taylor series method for solving differential algebraic equations developed by Pryce. This result extends a recent result by Corless for solutions of ordinary differential equations. The results of the standard theory of information-based complexity give exponential cost for solving ordinary differential equations, being based on a different model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.L. Allgower and K. Georg, Introduction to Numerical Continuation Methods (SIAM Classics in Applied Mathematics, Philadelphia, 2003).

    MATH  Google Scholar 

  2. R.P. Brent, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach 23(2) (1976) 242–251.

    MATH  MathSciNet  Google Scholar 

  3. P.S. Bullen, D.S. Mitrinovic and P.M. Vasic, Means and Their Inequalities, Mathematics and its Applications, East European Series (D. Reidel, Dordrecht, 1988).

    Google Scholar 

  4. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, (Wiley, Chichester, 1987).

    MATH  Google Scholar 

  5. R.M. Corless, A new view of the computational complexity of IVP for ODE, Numer. Algorithms 31 (2002) 115–124.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.M. Corless, An elementary solution of a minimax problem arising in algorithms for automatic mesh selection, SIGSAM Bulletin: Commun. Comput. Algebra 34(4) (2001) 7–15.

    Google Scholar 

  7. R.M. Corless, Error backward, Chaotic Numerics, AMS Contemporary Mathematics Series 172 (1994) 31–62.

    MathSciNet  Google Scholar 

  8. G. Corliss and Y.F. Chang, Solving ordinary differential equations using Taylor series, ACM Tansactions on Mathematical Software 8(2) (1982) 114–144.

    Article  MATH  MathSciNet  Google Scholar 

  9. W.H. Enright, A new error control for initial value solvers, Appl. Math. Comput. 31 (1989) 288–301.

    Article  MathSciNet  Google Scholar 

  10. W.H. Enright, Continuous numerical methods for ODEs with defect control, J. Comp. Appl. Math 125(1–2) (2000) 159–170.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Ilie and R.M. Corless, The cost of locating singularities and rank changes, in preparation.

  12. K.R. Jackson and N. Nedialkov, Some recent advances in validated methods for IVPs for ODEs, Appl. Numer. Math. 42(1) (2002) 269–284.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I, Computational Mathematics Vol. 8, (Springer, Berlin Heidelberg New York 1987).

    Google Scholar 

  14. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Computational Mathematics, Vol. 14, (Springer, Berlin Heidelberg New York 1991).

    Google Scholar 

  15. W. Kahan, Handheld calculator evaluates integrals, Hewlett-Packard J. 31(8) (1980) 23–32.

    MathSciNet  Google Scholar 

  16. C. Moler, Are we there yet? Zero crossing and event handling for differential equations, Matlab News & Notes (1997) 16–17.

  17. N.S. Nedialkov and J.D. Pryce, Solving differential-algebraic equations by Taylor series (I): computing Taylor coefficients, BIT, accepted.

  18. N.S.Nedialkov, Private Communication.

  19. H. Nguyen, Interpolation and error control schemes for DAE using continuous implicit Runge–Kutta methods, PhD thesis, Univ. of Toronto, (1995).

  20. J.D. Pryce, A simple structural analysis method for DAEs, BIT 41(2) (2001) 364–394.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.D. Pryce, Solving high-index DAEs by Taylor series, Numer. Algorithms 19 (1998) 195–211.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Shampine, Solving ODEs and DDEs with residual control, Appl. Numer. Math 52(1) (2005) 113–127.

    Article  MATH  MathSciNet  Google Scholar 

  23. L.F. Shampine, M.W. Reichelt and J.A. Kierzenka, Solving Index-1 DAEs in Matlab and Simulink, SIAM Rev. 41(3) (1999) 538–552.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Söderlind, Automatic control and adaptive time-stepping, Numer. Algorithms 31 (2002) 281–310.

    Article  MATH  MathSciNet  Google Scholar 

  25. A.G. Werschulz, The Computational Complexity of Differential and Integral Equations (Oxford Science, Oxford, 1991).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Ilie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilie, S., Corless, R.M. & Reid, G. Numerical solutions of index-1 differential algebraic equations can be computed in polynomial time. Numer Algor 41, 161–171 (2006). https://doi.org/10.1007/s11075-005-9007-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-9007-1

Keywords

AMS subject classification

Navigation