Skip to main content
Log in

Describing function based methods for predicting chaos in a class of fractional order differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with two different methods for predicting chaotic dynamics in fractional order differential equations. These methods, which have been previously proposed for detecting chaos in classical integer order systems, are based on using the describing function method. One of these methods is constructed based on Genesio–Tesi conjecture for existence of chaos, and another method is introduced based on Hirai conjecture about occurrence of chaos in a nonlinear system. These methods are restated to use in predicting chaos in a fractional order differential equation of the order between 2 and 3. Numerical simulation results are presented to show the ability of these methods to detect chaos in two fractional order differential equations with quadratic and cubic nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westerlund, S.: Dead matter has memory! Phys. Scr. 43(2), 174–179 (1991)

    Article  Google Scholar 

  2. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control and Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  3. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system. Acta Mech. 120, 109–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Podlubny, I.: Fractional order systems and PIλ Dμ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Oustaloup, A., Sabatier, J., Lanusse, P.: From fractal robustness to CRONE control. Fract. Calc. Appl. Anal. 2(1), 1–30 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Oustaloup, A., Moreau, X., Nouillant, M.: The CRONE suspension. Control Eng. Pract. 4(8), 1101–1108 (1996)

    Article  Google Scholar 

  8. Calderon, A.J., Vinagre, B.M., Feliu-Batlle, V.: Fractional-order control strategies for power electronic buck converters. Signal Process. 86, 2803–2819 (2006)

    Article  Google Scholar 

  9. Feliu-Batlle, V., Rivas Perez, R., Sanchez Rodriguez, L.: Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng. Pract. 15, 673–686 (2007)

    Article  Google Scholar 

  10. Tavazoei, M.S., Haeri, M., Jafari, S.: Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study. J. Syst. Control Eng. Part I 222, 175–184 (2008)

    Article  Google Scholar 

  11. Wang, Y., Li, C.: Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle? Phys. Lett. A 363, 414–419 (2007)

    Article  Google Scholar 

  12. Barbosa, R.S., Machado, J.A.T., Vingare, B.M., Calderon, A.J.: Analysis of the Van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Article  MATH  Google Scholar 

  13. Ahmad, W., El-Khazali, R., El-Wakil, A.: Fractional-order Wien-bridge oscillator. Electr. Lett. 37, 1110–1112 (2001)

    Article  Google Scholar 

  14. Tavazoei, M.S., Haeri, M.: Regular oscillations or chaos in a fractional order system with any effective dimension. Nonlinear Dyn. 54(3), 213–222 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I 42, 485–490 (1995)

    Article  Google Scholar 

  16. Deng, W., Lü, J.: Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. Chaos 16, 043120 (2006)

    Article  MathSciNet  Google Scholar 

  17. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional order systems. Phys. Lett. A 367(1–2), 102–113 (2007)

    Article  Google Scholar 

  18. Arena, P., Fortuna, L., Porto, D.: Chaotic behavior in noninteger-order cellular neural networks. Phys. Rev. E 61(1), 776–781 (2000)

    Article  Google Scholar 

  19. Seredynska, M., Hanyga, A.: A nonlinear differential equation of fractional order with chaotic properties. Int. J. Bifurc. Chaos 14(4), 1291–1304 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, Z.M., Lu, J.G., Xie, J.Y.: Analysing chaos in fractional-order systems with the harmonic balance method. Chin. Phys. 15(6), 1201–1207 (2006)

    Article  Google Scholar 

  21. Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, C.P., Deng, W.H., Chen, G.: Scaling attractors of fractional differential systems. Fractals 14(4), 303–314 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, C.P., Deng, W.H.: Chaos synchronization of fractional-order differential system. Int. J. Mod. Phys. B 20(7), 791–803 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Deng, W.H.: Generalized synchronization in fractional order systems. Phys. Rev. E 75, 0565201-1–0565201-7 (2007)

    Article  Google Scholar 

  25. Linz, S.J.: No-chaos criteria for certain classes of driven nonlinear oscillators. Acta Phys. Pol. B 34(7), 3741–3749 (2003)

    Google Scholar 

  26. Ciesielski, K.: On the Poincare–Bendixson theorem. In: Lecture Notes in Nonlinear Analysis, vol. 3, pp. 49–69 (2002)

  27. Silva, C.P.: Shil’nikov’s theorem—A tutorial. IEEE Trans. Circuits Syst. I 40, 675–682 (1993)

    Article  MATH  Google Scholar 

  28. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237(20), 2628–2637 (2008)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  30. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Diethelm, D., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3), 621–640 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nimmo, S., Evans, A.K.: The effects of continuously varying the fractional differential order of a chaotic nonlinear system. Chaos Solitons Fractals 10, 1111–1118 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Deng, W.H.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems. IET Signal Process. 1(4), 171–181 (2007)

    Article  MathSciNet  Google Scholar 

  37. Mees, A.I.: Dynamics of Feedback Systems. Wiley, New York (1981)

    MATH  Google Scholar 

  38. Bonnet, C., Partington, J.R.: Coprime factorizations and stability of fractional differential systems. Syst. Control Lett. 41, 167–174 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tavazoei, M.S., Haeri, M., Jafari, S., Bolouki, S., Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Ind. Electron. 55(11), 4094–4101 (2008)

    Article  Google Scholar 

  40. Genesio, R., Tesi, A.: Chaos prediction in nonlinear feedback systems. IEE Proc. D 138, 313–320 (1991)

    MATH  Google Scholar 

  41. Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  MATH  Google Scholar 

  42. Genesio, R., Tesi, A.: A harmonic balance approach for chaos prediction: Chua’s Circuit. Int. J. Bifurc. Chaos 2(1), 61–79 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  43. Genesio, R., Tesi, A., Villoresi, F.: A frequency approach for analyzing and controlling chaos in nonlinear circuits. IEEE Trans. Circuits Syst. I 40(11), 819–828 (1993)

    Article  MATH  Google Scholar 

  44. Savaci, F.A., Gunel, S.: Harmonic balance analysis of the generalized Chua’s circuit. Int. J. Bifurc. Chaos 16(8), 2325–2332 (2006)

    Article  MathSciNet  Google Scholar 

  45. Gelb, A., Velde, W.E.V.: Multiple-Input Describing Functions and Nonlinear System Design. McGraw Hill, New York (1967)

    Google Scholar 

  46. Mees, A.I.: Limit cycle stability. IMA J. Appl. Math. 11(3), 281–295 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hirai, K.: A simple criterion for the occurrence of chaos in nonlinear feedback systems. Electron. Commun. Jpn. Part 3 82(2), 11–19 (1999)

    Article  Google Scholar 

  48. Hirai, K.: A simple criterion for the occurrence of chaos. In: Proc. Int. Conf. on Nonlinearity, Bifurcation and Chaos 96 (ICNBC 96), Lodz, Poland, pp. 133–136 (1996)

  49. Hirai, K.: Analysis of bifurcation and chaos by describing function method. Chaos Memorial Symposium in Asuka, pp. 13–18 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavazoei, M.S., Haeri, M. Describing function based methods for predicting chaos in a class of fractional order differential equations. Nonlinear Dyn 57, 363–373 (2009). https://doi.org/10.1007/s11071-008-9447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9447-y

Keywords

Navigation