Skip to main content

Advertisement

Log in

Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network design deals with the decision making for new street constructions, lane additions to existing streets, lane allocations for two-way streets, and the orientations and locations of one-way streets. The bus network design is performed by keeping the terminal stations of the existing bus lines unchanged and redesigning the forth and back routes of each line. Four measures, namely user benefit, the demand coverage of the bus network, the demand share of the bus mode, and the average travel generalized cost of bus passengers, are used to evaluate the network design scenarios. The problem is formulated as a multi-objective optimization model in which a modal-split/assignment model is included to depict the mode and route choice behaviors of travelers. The model is solved by the hybrid genetic algorithm and the hybrid clonal selection algorithm. The performance of these algorithms is presented and investigated by solving a number of test networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulaal M, LeBlanc LJ (1979) Methods for combining modal split and equilibrium assignment models. Transportation Sci 13(4):292–314

    Article  Google Scholar 

  • Bellei G, Gentile G, Papola N (2002) Network pricing optimization in multi-user and multimodal context with elastic demand. Transport Res part B 36(9):779–798

    Article  Google Scholar 

  • Ben-Ayed O, Boyce DE, Blair CE (1988) A General Bilevel Linear Programming Formulation of the Network Design Problem. Transport Res part B 22(4):311–318

    Article  Google Scholar 

  • Cantarella GE, Pavone G, Vitetta A (2006) Heuristics for urban road network design: lane layout and signal settings. Eur J Oper Res 175(3):1682–1695

    Article  Google Scholar 

  • Cantarella GE, Vitetta A (2006) The multi-criteria road network design problem in an urban area. Transportation 33(6):567–588

    Article  Google Scholar 

  • Ceder A, Wilson NHM (1986) Bus network design. Transport Res part B 20(4):331–344

    Article  Google Scholar 

  • Chiou S (2008) A hybrid approach for optimal design of signalized road network. Appl Math Model 32(2):195–207

    Article  Google Scholar 

  • Chung BD, Yao T, Xie C, Thorsen A (2011) Robust optimization model for a dynamic network design problem under demand uncertainty. Networks and Spatial Econ 11(2):371–389

    Article  Google Scholar 

  • Clegg J, Smith M, Xiang Y, Yarrow R (2001) Bilevel programming applied to optimising urban transportation. Transport Res part B 35(1):41–70

    Article  Google Scholar 

  • D’Acierno L, Gallo M, Montella B (2005) A multimodal approach for managing transportation design problems of real size networks. Advanced OR and AI methods in transportation, In: Jaszkiewicz A, Kaczmarek M, Zak J, Kubiak M (eds.) Publishing House of Poznan University of Technology, pp 200–205

  • D’Acierno L, Gallo M, Montella B (2006) Optimisation models for the urban parking pricing problem. Transport Pol 13(1):34–48

    Article  Google Scholar 

  • Dafermos S (1972) The traffic assignment problem for multiclass-user transportation networks. Transportation Sci 6(1):73–87

    Article  Google Scholar 

  • Dafermos S (1982) Relaxation algorithms for the general asymmetric traffic equilibrium problem. Transportation Sci 16(2):231–240

    Article  Google Scholar 

  • Dantzig GB, Harvey RP, Lansdowne ZF, Robinson DW, Maier SF (1979) Formulating and solving the network design problem by decomposition. Transport Res part B 13(1):5–17

    Article  Google Scholar 

  • De Castro LN, Von Zuben FJ (2000) Clonal selection algorithm with engineering applications. Proceedings of Genetic and Evolutionary Computation Conference 00:36–37

    Google Scholar 

  • De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–250

    Article  Google Scholar 

  • De Cea J, Fernández JE (1993) Transit assignment for congested public transport systems: an equilibrium model. Transportat Sci 27(2):133–147

    Article  Google Scholar 

  • Desaulniers G, Hickman MD (2007) Public transit. In: Barnhart C, Laporte G (eds) Handbook in operations research and management science, transportation, vol 14. Elsevier, Amsterdam, pp 69–127

    Google Scholar 

  • Drezner Z, Salhi S (2000) Selecting a good configuration of one-way and two-way routes using Tabu search. Contr Cybern 29(3):725–740

    Google Scholar 

  • Drezner Z, Salhi S (2002) Using hybrid metaheuristics for the one-way and two-way network design problem. Nav Res Logist 49(5):449–463

    Article  Google Scholar 

  • Drezner Z, Wesolowsky GO (1997) Selecting an optimum configuration of one-way and two-way routes. Transport Sci 31(4):386–394

    Article  Google Scholar 

  • Drezner Z, Wesolowsky GO (2003) Network design: selection and design of links and facility location. Transport Res part A 37(3):241–256

    Google Scholar 

  • Fernández JE, De Cea J, Malbran RH (2008) Demand responsive urban public transport system design: methodology and application. Transport Res part A 42(7):951–972

    Google Scholar 

  • Ferrari P (1999) A model of urban transport management. Transport Res part B 33(1):43–61

    Article  Google Scholar 

  • Florian M, Spiess H (1982) The convergence of diagonalization algorithms for asymmetric network equilibrium problems. Transport Res part B 16(6):477–483

    Article  Google Scholar 

  • Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transport Res part A 19(5–6):413–427

    Article  Google Scholar 

  • Friesz TL, Anandalingam G, Mehta NJ, Nam K, Shah SJ, Tobin RL (1993) The multiobjective equilibrium network design problem revisited: a simulated annealing approach. Eur J Oper Res 65(1):44–57

    Article  Google Scholar 

  • Gallo M, D’Acierno L, Montella B (2010) A meta-heuristic approach for solving the urban network design problem. Eur J Oper Res 201(1):144–157

    Article  Google Scholar 

  • Gao Z, Sun H, Shan LL (2004) A continuous equilibrium network design model and algorithm for transit systems. Transport Res part B 38(3):235–250

    Article  Google Scholar 

  • Guihaire V, Hao JK (2008) Transit network design and scheduling: a global review. Transport Res part A 42(10):1251–1273

    Google Scholar 

  • Hamdouch Y, Florian M, Hearn DW, Lawphongpanich S (2007) Congestion pricing for multi-modal transportation systems. Transport Res part B 41(3):275–291

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Michigan

    Google Scholar 

  • Jeon K, Lee JS, Ukkusuri SV, Waller ST (2006) Selectorecombinative genetic algorithm to relax computational complexity of discrete network design problem. Transportation Research Record: Journal of the Transportation Research Board 1964:91–103

    Article  Google Scholar 

  • Karoonsoontawong A, Waller ST (2010) Integrated network capacity expansion and traffic signal optimization problem: robust bi-level dynamic formulation. Network Spatial Econ 10(4):525–550

    Article  Google Scholar 

  • Kov M, Fukuda D, Yai T (2010) Frequency design of bus transit mixed urban transport network. Asian Transport Studies 1(4):352–367

    Google Scholar 

  • LeBlanc LJ (1975) An algorithm for the discrete network design problem. Transportat Sci 9(3):183–199

    Article  Google Scholar 

  • LeBlanc LJ, Morlok EK, Pierskalla WP (1975) An efficient approach to solving the road network equilibrium traffic assignment problem. Transportat Res 9:309–318

    Article  Google Scholar 

  • Lee CK, Yang KI (1994) Network design of one-way streets with simulated annealing. Paper Reg Sci 73(2):119–134

    Article  Google Scholar 

  • Li ZC, Lam WHK, Wong SC (2009) The optimal transit fare structure under different market regimes with uncertainty in the network. Network Spatial Econ 9(2):191–216

    Article  Google Scholar 

  • Lin DY, Karoonsoontawong A, Waller ST (2011) A Dantzig-Wolfe decomposition based heuristic scheme for bi-level dynamic network design problem. Network Spatial Econ 11(1):101–126

    Article  Google Scholar 

  • Lo HK, Yip CW, Wan KH (2003) Modelling transfer and non-linear fare structure in multi-modal network. Transport Res part B 37(2):149–170

    Article  Google Scholar 

  • Lo HK, Szeto WY (2009) Time-dependent transport network design under cost-recovery. Transport Res part B 43(1):142–158

    Article  Google Scholar 

  • Long J, Gao Z, Zhang H, Szeto WY (2010) A turning restriction design problem in urban road networks. Eur J Oper Res 206(3):569–578

    Article  Google Scholar 

  • Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transportat Sci 18(1):1–55

    Article  Google Scholar 

  • Miandoabchi E, Zanjirani Farahani R, Szeto WY (2010) Multi-objective Discrete Urban Road Network Design. submitted to Journal of Operational Research Society.

  • Miandoabchi E, Zanjirani FR, Szeto WY (2011) Bi-objective bimodal urban road network design using hybrid metaheuristics. Cent Eur J Oper Res. doi:10.1007/s10100-011-0189-4

  • Migdalas A (1995) Bilevel programming in traffic planning: models, methods, and challenge. J Global Optim 7(4):381–405

    Article  Google Scholar 

  • Nagurney A (1984) Comparative tests of multimodal traffic equilibrium methods. Transport Res part B 18(6):469–485

    Article  Google Scholar 

  • Nguyen S, Dupuis C (1984) An efficient method for computing traffic equilibria in networks with asymmetric transportation costs. Transportat Sci 18(2):185–202

    Article  Google Scholar 

  • Nguyen S, Pallottino S, Gendreau M (1998) Implicit enumeration of hyperpaths in logit models for transit networks. Transportat Sci 32(1):54–64

    Article  Google Scholar 

  • Nuzzolo A, Russo F, Crisalli U (2001) A doubly dynamic schedule-based assignment model for transit networks. Transportat Sci 35(3):268–285

    Article  Google Scholar 

  • Patil GR, Ukkusuri SV (2007) System-optimal stochastic transportation network design. Transportation Research Record: Journal of the Transportation Research Board 2029:80–86

    Article  Google Scholar 

  • Poorzahedy H, Abulghasemi F (2005) Application of ant system to network design problem. Transportation 32(3):251–273

    Article  Google Scholar 

  • Poorzahedy H, Rouhani OM (2007) Hybrid meta-heuristic algorithms for solving network design problem. Eur J Oper Res 182(2):578–596

    Article  Google Scholar 

  • Poorzahedy H, Turnquist MA (1982) Approximate algorithms for the discrete network design problem. Transport Res part B 16(1):45–55

    Article  Google Scholar 

  • Roberts FS, Xu Y (1988) On the optimal strongly connected orientations of city street graphs I: large grids. SIAM J Discrete Math 1(2):199–222

    Article  Google Scholar 

  • Roberts FS, Xu Y (1989) On the optimal strongly connected orientations of city street graphs: II. Two east-west avenues or north-south streets. Networks 19(2):221–233

    Article  Google Scholar 

  • Roberts FS, Xu Y (1992) On the optimal strongly connected orientations of city street graphs: III. Three east-west avenues or north-south streets. Networks 22(2):109–143

    Article  Google Scholar 

  • Roberts FS, Xu Y (1994) On the optimal strongly connected orientations of city street graphs IV: four east-west avenues or north-south streets. Discrete Appl Math 49(1–3):331–356

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Shepherd S, Sumalee A (2004) A genetic algorithm based approach to optimal toll level and location problems. Network Spatial Econ 4(2):161–179

    Article  Google Scholar 

  • Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit networks. Transport Res part B 23(2):83–102

    Article  Google Scholar 

  • Steenbrink PA (1974) Transport network optimization in the dutch integral transportation study. Transportat Res 8(1):11–27

    Article  Google Scholar 

  • Szeto WY, Lo HK (2005) Strategies for road network design over time: robustness under uncertainty. Transportmetrica 1(1):47–63

    Article  Google Scholar 

  • Szeto WY, Lo HK (2006) Transportation network improvement and tolling strategies: the issue of intergeneration equity. Transport Res part A 40(3):227–243

    Google Scholar 

  • Szeto WY, Lo HK (2008) Time-dependent transport network improvement and tolling strategies. Transport Res part A 42(2):376–391

    Google Scholar 

  • Szeto WY, Solayappan M, Jiang Y (2011) Reliability-based transit assignment for congested stochastic transit networks. Comput Aided Civ Infrastruct Eng 26(4):311–326

    Article  Google Scholar 

  • Szeto WY, Jaber XQ, O’Mahony M (2010) Time-dependent discrete network design frameworks considering land use. Comput Aided Civ Infrastruct Eng 25(6):411–426

    Article  Google Scholar 

  • Szeto WY, Wu Y (2011) A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. Eur J Oper Res 209(2):141–155

    Article  Google Scholar 

  • Teklu F (2008) A stochastic process approach for frequency-based transit assignment with strict capacity constraints. Network Spatial Econ 8(2–3):225–240

    Article  Google Scholar 

  • Uchida K, Sumalee A, Watling D, Connors R (2007) A study on network design problems for multi-modal networks by probit-based stochastic user equilibrium. Network Spatial Econ 7(3):213–240

    Article  Google Scholar 

  • U.S. Bureau of Public Roads (1964) Traffic assignment manual. U.S. Department of Commerce, Washington

    Google Scholar 

  • Ukkusuri SV, Waller ST (2008) Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions. Network Spatial Econ 8(4):383–406

    Article  Google Scholar 

  • Ukkusuri SV, Mathew TV, Waller ST (2007) Robust transportation network design under demand uncertainty. Comput Aided Civ Infrastruct Eng 22(1):6–18

    Article  Google Scholar 

  • Van Nes R (2002) Design of multimodal transport networks. PhD Thesis, Delft University, Netherlands

  • Yang H, Bell MGH (1998) Models and algorithms for road network design: a review and some new developments. Transport Rev 18(3):257–278

    Article  Google Scholar 

  • Yang H, Wang JYT (2002) Travel time minimization versus reserve capacity maximization in the network design problem. Transportation Research Record: Journal of the Transportation Research Board 1783:17–26

    Article  Google Scholar 

  • Ying JQ, Yang H (2005) Sensitivity analysis of stochastic user equilibrium flows in a bi-modal network with application to optimal pricing. Transport Res part B 39(9):769–795

    Article  Google Scholar 

  • Zhang H, Gao Z (2007) Two-way road network design problem with variable lanes. J Syst Sci Syst Eng 16(1):50–61

    Article  Google Scholar 

  • Zhong Y, Zhang L, Li P (2005) Multispectral remote sensing image classification based on simulated annealing clonal selection algorithm. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05): pp 3745–3748

  • Zhong Y, Zhang L, Huang B, Li P (2006) An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans Geosci Rem Sens 44(2):420–431

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich

Download references

Acknowledgements

The authors are grateful for the two anonymous referees and Prof. S.V. Ukkusuri for their constructive comments. The research was jointly supported by a grant (200902172003) from the Hui Oi Chow Trust Fund and two grants (201001159008 and 201011159026) from the University Research Committee of the University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zanjirani Farahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miandoabchi, E., Farahani, R.Z., Dullaert, W. et al. Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks. Netw Spat Econ 12, 441–480 (2012). https://doi.org/10.1007/s11067-011-9163-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-011-9163-x

Keywords

Navigation