Skip to main content

Advertisement

Log in

Activation of Amyloid Precursor Protein Processing by Growth Factors is Dependent on Ras GTPase Activity

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The β-amyloid peptide is generated by the proteolysis of the amyloid precursor protein (APP) by the action of β- and γ-secretase. The mechanisms underlying this process are poorly understood. Using a cell-based reporter gene assay we analysed the possible signals and pathways that could be involved in APP cleavage. We used the stable cell line HeLa AG that expresses the human APP695 fused with the yeast transcription factor Gal4. This fusion protein is normally translocated into the plasma membrane and after APP-Gal4 cleavage, the AICD-Gal4 fragment released can activate the transcription of a luciferase reporter gene. Through this reporter system, we demonstrated that Ras GTPase, but not Ral and Rap, could promote APP-Gal4 cleavage. In addition HeLa AG cells stimulated with EGF or PDGF or overexpressing EGFR exhibit increased APP proteolysis in a Ras-dependent way. This process is also dependent on γ-secretase activity, being abolished by the γ-secretase inhibitor DAPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fraser PE, Yang DS, Yu G et al (2000) Presenilin structure, function and role in Alzheimer disease. Biochim Biophys Acta 1502:1–15

    CAS  PubMed  Google Scholar 

  2. Orlacchio A, St George-Hyslop PH, Sorbi S (2000) The amyloid precursor protein, presenilins and Alzheimer’s disease. Rec Res Dev Neurochem 3:205–214

    CAS  Google Scholar 

  3. Annaert W, De Strooper B (2002) A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Biol 18:25–51

    Article  CAS  PubMed  Google Scholar 

  4. Abbenante G, Kovacs DM, Leung DL et al (2000) Inhibitors of β-Amyloid formation based on the β-secretase cleavage site. Biochem Biophys Res Comm 268:133–135

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe DJ, Yamazaki T, Citron M et al (1996) The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann N Y Acad Sci 777:57–64

    Article  CAS  PubMed  Google Scholar 

  6. Kamal A, Almenar-Queralt A, LeBlanc JF et al (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414:643–648

    Article  CAS  PubMed  Google Scholar 

  7. Fiore F, Zambrano N, Minopoli G et al (1995) The region of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J Biol Chem 270:30853–30856

    Article  CAS  PubMed  Google Scholar 

  8. Zambrano N, Buxbaum JD, Minopoli G et al (1997) Interaction of the phosphotyrosine interaction/phosphotyrosine binding related domains of Fe65 with wild type and mutant Alzheimer’s beta-amyloid precursor proteins. J Biol Chem 272:6399–6405

    Article  CAS  PubMed  Google Scholar 

  9. Russo C, Dolcini V, Salis S et al (2002) Signal transduction through tyrosine-phosphorylated carboxy-terminal fragments via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer’s disease brain. J Biol Chem 277:35282–35288

    Article  CAS  PubMed  Google Scholar 

  10. Tarr PE, Roncarati R, Pelicci PG et al (2002) Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmatic tail promotes interaction with Shc. J Biol Chem 277:16798–19804

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda ST, Yasukawa T, Homma Y et al (2001) c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer’s amyloid precursor protein with JNK. J Neurosci 21:6597–6607

    CAS  PubMed  Google Scholar 

  12. Minopoli G, De Candia P, Bonetti A et al (2001) The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem 276:6545–6550

    Article  CAS  PubMed  Google Scholar 

  13. Cao X, Sudhof TC (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115–120

    Article  CAS  PubMed  Google Scholar 

  14. Zambrano N, Minopoli G, De Candia P et al (1998) The Fe65 adaptor protein interacts through its PID1 domain with the transcriptional factor CP2/LSF/LBP1. J Biol Chem 273:20128–20133

    Article  CAS  PubMed  Google Scholar 

  15. Gianni D, Zambrano N, Bimonte M et al (2003) Platelet-derived growth factor induces the β-γ-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 278:9290–9297

    Article  CAS  PubMed  Google Scholar 

  16. Wang PL, Niidome T, Akaike A et al (2009) Rac1 inhibition negatively regulates transcriptional activity of the Amyloid precursor protein gene. J Neurosci Res 87:2105–2114

    Article  CAS  PubMed  Google Scholar 

  17. Connor B, Beilharz EJ, Williams C et al (1997) Insulin-like growth factor-I (IGF-I) immunoreactivity in Alzheimer’s disease temporal cortex and Hippocampus. Mol Brain Res 49:283–290

    Article  CAS  PubMed  Google Scholar 

  18. Fahnestock M, Scott SA, Jett N et al (1996) Nerve Growth Factor mRNA and protein level measured in the same tisuue from normal and Alzheimer’s disease parietal cortex. Brain Res Mol Brain Res 42:175–178

    Article  CAS  PubMed  Google Scholar 

  19. Fenton H, Finch PW, Rubin JS et al (1998) Hepatocyte growth factor (HGF/SF) in Alzheimer’s disease. Brain Res 776:262–270

    Article  Google Scholar 

  20. Cosgaya JM, Latasa MJ, Pascual A (1996) Nerve growth factor and ras regulate beta-amyloid precursor protein gene expression in PC12 cells. J Neurochem 67:98–104

    Article  CAS  PubMed  Google Scholar 

  21. Sadot E, Jaaro H, Seger R et al (1998) Ras-signalling pathways: positive and negative regulators of tau expression in PC12 cells. J Neurochem 70:428–431

    Article  CAS  PubMed  Google Scholar 

  22. Pei JJ, Braak H, An LW et al (2002) Up-regulation of mitogen activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109:45–46

    Article  CAS  PubMed  Google Scholar 

  23. Mei M, Su B, Harrison K et al (2006) Distribution, levels and phosphorylation of Raf-1 in Alzheimer’s disease. J Neurochem 99:1377–1388

    Article  CAS  PubMed  Google Scholar 

  24. Gartner U, Holzer M, Arendt T (1999) Elevated expression of p21Ras is an early event in Alzheimer’s deisease and procedes neurofibrillary degeneration. Neurosci 91:1–5

    Article  CAS  Google Scholar 

  25. Gartner U, Holzer M, Heumann R et al (1995) Induction of p21ras in Alzheimer pathology. Neuroreport 6:1441–1444

    Article  CAS  PubMed  Google Scholar 

  26. Emiliani C, Urbanelli L, Racanicchi L et al (2003) Up-regulation of glycohydrolases in Alzheimer’s Disease Fibroblasts correlates with Ras activation. J Biol Chem 278:38453–38460

    Article  CAS  PubMed  Google Scholar 

  27. Urbanelli L, Emiliani C, Massini C et al (2008) Cathepsin D expression is decreased in Alzheimer’s disease fibroblasts. Neurobiol Aging 29:12–22

    Article  CAS  PubMed  Google Scholar 

  28. Minopoli G, Passaro F, Aloia L et al (2007) Receptor- and Non-receptor Tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein. Neurodegener Dis 4:94–100

    Article  CAS  PubMed  Google Scholar 

  29. Roßner S, Ueberham U, Schliebs R et al (1998) p75 and TrkA receptor signaling independently regulate amyloid precursor protein mRNA expression, isoform composition, and protein secretion in PC12 cells. J Neurochem 71:757–766

    Article  PubMed  Google Scholar 

  30. Zou L, Wang Z, Shen L et al (2007) Receptor tyrosine kinases positively regulate BACE activity and amyloid-β production through enhancing BACE internalization. Cell Res 17:389–401

    CAS  PubMed  Google Scholar 

  31. Ebinu JO, Yankner BA (2000) A RIP tide in neuronal signal transduction. Neuron 34:499–502

    Article  Google Scholar 

  32. Lorents O, Suh ER, Taylor JK et al (1999) CREB-binding protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity. J Biol Chem 274:7196–7199

    Article  Google Scholar 

  33. Zambrano N, Gianni D, Bruni P et al (2004) Fe65 is not involved in the plateled-derived growth factor-induced processing of Alzheimer’s Amyloid Precursor Protein, which activates its caspase-directed cleavage. J Biol Chem 279:16161–16169

    Article  CAS  PubMed  Google Scholar 

  34. Zippel R, Balestrini M, Lomazzi M et al (2000) Calcium and calmodulin are essential for Ras-GRF1-mediated activation of the Ras pathway by lysophosphatidic acid. Exp Cell Res 258:403–408

    Article  CAS  PubMed  Google Scholar 

  35. Rebhun JF, Chen H, Quilliam LA (2000) Identification and characterization of a new family of guanine nucleotide exchange factors for the Ras-related GTPase Ral. J Biol Chem 275:13406–13410

    Article  CAS  PubMed  Google Scholar 

  36. De Rooij J, Zwartkruis FJ, Verheijen MH et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    Article  PubMed  Google Scholar 

  37. Medema RH, Wubbolts R, Bos JL (1991) Two dominant inhibitory mutants of p21ras interfere with insuline-induced gene expression. Mol Cell Biol 11:5963–5967

    CAS  PubMed  Google Scholar 

  38. Vanoni M, Bertini R, Sacco E et al (1999) Characterization and properties of Dominant-negative mutants of the Ras-specific Guanine Nucleotide Exchange Factor Cdc25 Mm. J Biol Chem 274:36656–36662

    Article  CAS  PubMed  Google Scholar 

  39. Ceriani M, Scandiuzzi C, Amigoni L et al (2007) Functional analysis of RalGPS2, a murine guanine nucleotide exchange factor for RalA GTPase. Exp Cell Res 313:2293–2307

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka S, Morishita T, Hashimoto Y et al (1994) C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology domains of CRK and Grb2/ASH proteins. Proc Natl Acad Sci USA 91:3443–3447

    Article  CAS  PubMed  Google Scholar 

  41. Miloso M, Mazzotti M, Vass WC et al (1995) SHC and GRB-2 are costitutively by an epidermal growth factor receptor with a point mutation in the transmembrane domain. J Biol Chem 270:19557–19562

    Article  CAS  PubMed  Google Scholar 

  42. Greco A, Mariani C, Miranda C et al (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18:397–400

    Article  CAS  PubMed  Google Scholar 

  43. Liu F, Arias-Vasquez A, Sleegers K et al (2007) A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81:17–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a FAR (ex60%) grant to E.M. and by PRIN 2005 grant. We would like to thank L.A. Quilliam for providing pFLAG-CMV2-RalA and pMT2-HA-Rlf vectors; PG Traber for pRC-CMV-Gal4 vector; N. Zambrano for constitutively active Src (SrcYF) vector; R. Zippel for pc3myc-H-Ras plasmid; A. Wittinghofer for providing pCDNA3-Rap1 and pHSG-C3G -HA vectors; J.L. Bos for pRSV-rasN17 and pRSV-rasL61 constructs; L. Beguinot for pMMTV-EGFR vectors and M. Pierotti for pRC/CMV-TrkA plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Martegani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amigoni, L., Ceriani, M., Belotti, F. et al. Activation of Amyloid Precursor Protein Processing by Growth Factors is Dependent on Ras GTPase Activity. Neurochem Res 36, 392–398 (2011). https://doi.org/10.1007/s11064-010-0343-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0343-8

Keywords

Navigation