Skip to main content

Advertisement

Log in

Beneficial Effects of Minocycline on Cuprizone Induced Cortical Demyelination

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bo L, Geurts JJ, Mork SJ et al (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50

    Article  CAS  PubMed  Google Scholar 

  2. Kutzelnigg A, Faber-Rod JC, Bauer J et al (2007) Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17:38–44

    Article  PubMed  Google Scholar 

  3. Bo L, Vedeler CA, Nyland H et al (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331

    Article  CAS  PubMed  Google Scholar 

  4. Skripuletz T, Bussmann JH, Gudi V et al (2010) Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol 20:231–232

    Article  Google Scholar 

  5. Skripuletz T, Lindner M, Kotsiari A et al (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061

    Article  PubMed  Google Scholar 

  6. Torkildsen O, Brunborg LA, Myhr KM et al (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76

    Article  CAS  PubMed  Google Scholar 

  7. Blakemore WF (1973) Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci 20:63–72

    Article  CAS  PubMed  Google Scholar 

  8. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  CAS  PubMed  Google Scholar 

  9. Bakker DA, Ludwin SK (1987) Blood–brain barrier permeability during Cuprizone-induced demyelination. Implications for the pathogenesis of immune-mediated demyelinating diseases. J Neurol Sci 78:125–137

    Article  CAS  PubMed  Google Scholar 

  10. Kondo A, Nakano T, Suzuki K (1987) Blood-brain barrier permeability to horseradish peroxidase in twitcher and cuprizone-intoxicated mice. Brain Res 425:186–190

    Article  CAS  PubMed  Google Scholar 

  11. Kloppenburg M, Verweij CL, Miltenburg AM et al (1995) The influence of tetracyclines on T cell activation. Clin Exp Immunol 102:635–641

    Article  CAS  PubMed  Google Scholar 

  12. Yrjanheikki J, Tikka T, Keinanen R et al (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  CAS  PubMed  Google Scholar 

  13. Dommergues MA, Plaisant F, Verney C et al (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628

    Article  CAS  PubMed  Google Scholar 

  14. Fan R, Xu F, Previti ML et al (2007) Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci 27:3057–3063

    Article  CAS  PubMed  Google Scholar 

  15. Brundula V, Rewcastle NB, Metz LM et al (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Article  PubMed  Google Scholar 

  16. Popovic N, Schubart A, Goetz BD et al (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51:215–223

    Article  CAS  PubMed  Google Scholar 

  17. Rehbinder C, Baneux P, Forbes D et al (1996) FELASA recommendations for the health monitoring of mouse, rat, hamster, gerbil, guinea pig and rabbit experimental units. Report of the Federation of European Laboratory Animal Science Associations (FELASA). Working Group on Animal Health accepted by the FELASA Board of Management, November 1995. Lab Anim 30:193–208

  18. Lindner M, Heine S, Haastert K et al (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34:105–114

    CAS  PubMed  Google Scholar 

  19. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  20. Lindner M, Trebst C, Heine S et al (2008) The chemokine receptor CXCR2 is differentially regulated on glial cells in vivo but is not required for successful remyelination after cuprizone-induced demyelination. Glia 56:1104–1113

    Article  PubMed  Google Scholar 

  21. Gudi V, Moharregh-Khiabani D, Skripuletz T et al (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138

    Article  CAS  PubMed  Google Scholar 

  22. van Gaalen MM, Steckler T (2000) Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res 115:95–106

    Article  PubMed  Google Scholar 

  23. Pellow S, Chopin P, File SE et al (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  24. Karl T, Pabst R, von Horsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55:69–83

    Article  PubMed  Google Scholar 

  25. Kuhlmann T, Remington L, Maruschak B et al (2007) Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions. J Neuropathol Exp Neurol 66:238–246

    Article  CAS  PubMed  Google Scholar 

  26. Li WW, Setzu A, Zhao C et al (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 158:58–66

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez Mejia RO, Ona VO, Li M et al (2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48:1393–1399

    Article  CAS  PubMed  Google Scholar 

  28. Koutsoudaki PN, Skripuletz T, Gudi V et al (2009) Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett 451:83–88

    Article  CAS  PubMed  Google Scholar 

  29. Norkute A, Hieble A, Braun A et al (2009) Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 87:1343–1355

    Article  CAS  PubMed  Google Scholar 

  30. Crawford DK, Mangiardi M, Xia X et al (2009) Functional recovery of callosal axons following demyelination: a critical window. Neuroscience 164:1407–1421

    Article  CAS  PubMed  Google Scholar 

  31. Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21:1147–1151

    Article  CAS  PubMed  Google Scholar 

  32. Kipp M, Clarner T, Dang J et al (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118:723–736

    Article  PubMed  Google Scholar 

  33. Mahad D, Lassmann H, Turnbull D (2008) Review: Mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 34:577–589

    Article  CAS  PubMed  Google Scholar 

  34. Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189

    Article  CAS  PubMed  Google Scholar 

  35. Pasquini LA, Calatayud CA, Bertone Una AL et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292

    Article  CAS  PubMed  Google Scholar 

  36. de Haas AH, Boddeke HW, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56:888–894

    Article  PubMed  Google Scholar 

  37. de Haas AH, Boddeke HW, Brouwer N et al (2007) Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 55:1374–1384

    Article  PubMed  Google Scholar 

  38. Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202:217–224

    Article  CAS  PubMed  Google Scholar 

  39. Franco-Pons N, Torrente M, Colomina MT et al (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169:205–213

    Article  CAS  PubMed  Google Scholar 

  40. Hibbits N, Pannu R, John WT et al (2009) Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination. ASN Neuro 1

  41. Makinodan M, Yamauchi T, Tatsumi K et al (2009) Demyelination in the juvenile period, but not in adulthood, leads to long-lasting cognitive impairment and deficient social interaction in mice. Prog Neuropsychopharmacol Biol Psychiatry 33:978–985

    Article  CAS  PubMed  Google Scholar 

  42. Bilousova TV, Dansie L, Ngo M et al (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    Article  CAS  PubMed  Google Scholar 

  43. Henry CJ, Huang Y, Wynne A et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  Google Scholar 

  44. Chacur M, Lambertz D, Hoheisel U et al (2008) Role of spinal microglia in myositis-induced central sensitisation: An immunohistochemical and behavioural study in rats. Eur J Pain 13:915–923

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Georg-Christoph-Lichtenberg Fellowship by the State of Lower Saxony. We thank I. Cierpka-Leja for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stangel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skripuletz, T., Miller, E., Moharregh-Khiabani, D. et al. Beneficial Effects of Minocycline on Cuprizone Induced Cortical Demyelination. Neurochem Res 35, 1422–1433 (2010). https://doi.org/10.1007/s11064-010-0202-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0202-7

Keywords

Navigation