Skip to main content

Advertisement

Log in

Chronic Lithium Treatment has Antioxidant Properties but does not Prevent Oxidative Damage Induced by Chronic Variate Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731

    Article  PubMed  CAS  Google Scholar 

  2. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl. 1):20–23

    Article  PubMed  CAS  Google Scholar 

  3. Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548

    Article  PubMed  CAS  Google Scholar 

  4. Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  PubMed  CAS  Google Scholar 

  5. McIntosh L, Sapolsky R (1996) Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induce toxicity in neuronal culture. Exp Neurol 141:201–206

    Article  PubMed  CAS  Google Scholar 

  6. Cochrane C (1991) Mechanisms of oxidant injury of cells. Mol Aspects Med 12:137–147

    Article  PubMed  CAS  Google Scholar 

  7. Anderson DK, Saunders RD, Demediuk P et al (1985) Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 2:257–267

    PubMed  CAS  Google Scholar 

  8. Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233

    Article  CAS  Google Scholar 

  9. Sandhir R, Julka D, Gill KD (1994) Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacol Toxicol 74:66–71

    Article  PubMed  CAS  Google Scholar 

  10. Bondy SC (1992) Reactive oxygen species: relation to aging and neurotoxic damage. Neurotoxicology 13:87–100

    PubMed  CAS  Google Scholar 

  11. Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102:5–12

    Article  PubMed  CAS  Google Scholar 

  12. Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  13. McIntosh LJ, Cortopassi KM, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studies. Brain Res 791:215–222

    Article  PubMed  CAS  Google Scholar 

  14. McIntosh LJ, Hong KE, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res 791:209–214

    Article  PubMed  CAS  Google Scholar 

  15. Fontella FU, Siqueira IR, Vasconcellos AP et al (2005) Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 30:105–111

    Article  PubMed  CAS  Google Scholar 

  16. Manji HK, Moore GJ, Chen G (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 46:929–940

    Article  PubMed  CAS  Google Scholar 

  17. Shaldubina A, Agam G, Belmaker RH (2001) The mechanism of lithium action: state of the art, ten years later. Prog Neuropsychopharmacol Biol Psychiatry 25:855–866

    Article  PubMed  CAS  Google Scholar 

  18. Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274:6039–6042

    Article  PubMed  CAS  Google Scholar 

  19. Jope RS (1999) Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 4:117–128

    Article  PubMed  CAS  Google Scholar 

  20. Manji HK, Moore GJ, Chen G (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry 61(Suppl. 9):82–96

    PubMed  CAS  Google Scholar 

  21. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  PubMed  CAS  Google Scholar 

  22. Schafer M, Goodenough S, Moosmann B et al (2004) Inhibition of glycogen synthase kinase 3 beta is involved in the resistance to oxidative stress in neuronal HT22 cells. Brain Res 1005:84–89

    Article  PubMed  CAS  Google Scholar 

  23. Pugazhenthi S, Nesterova A, Jambal P et al (2003) Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons. J Neurochem 84:982–996

    Article  PubMed  CAS  Google Scholar 

  24. Hochman A, Sternin H, Gorodin S et al (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 71:741–748

    Article  PubMed  CAS  Google Scholar 

  25. Vasconcellos AP, Tabajara AS, Ferrari C et al (2003) Effect of chronic stress on spatial memory in rats is attenuated by lithium treatment. Physiol Behav 79:143–149

    Article  PubMed  CAS  Google Scholar 

  26. Rocha E, Rodnight R (1994) Chronic administration of lithium chloride increases immunodetectable glial fibrillary acidic protein in the rat hippocampus. J Neurochem 63:1582–1584

    Article  PubMed  CAS  Google Scholar 

  27. Vasconcellos APS, Zugno A, Santos AHDP et al (2005) Na+, K+-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem 84:102–110

    Article  PubMed  CAS  Google Scholar 

  28. Konarska M, Stewart RE, McCarty R (1990) Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 53:231–243

    Article  PubMed  CAS  Google Scholar 

  29. Willner P (1991) Animal models as simulations of depression. Trends Pharmacol Sci 12:131–136

    Article  PubMed  CAS  Google Scholar 

  30. Murua VS, Molina VA (1992) Effects of chronic variable stress and antidepressant drugs on behavioral inactivity during an uncontrollable stress: interaction between both treatments. Behav Neural Biol 57:87–89

    Article  PubMed  CAS  Google Scholar 

  31. Gamaro GD, Manoli LP, Torres IL et al (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114

    Article  PubMed  CAS  Google Scholar 

  32. Wang IH, Joseph JA (1999) Quantifying cellular oxidative stress by a dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  33. Buege JA, Aust SD (1987) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Google Scholar 

  34. Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  35. Lissi E, Pascual C, del Castillo MD (1992) Luminol luminescence induced by 2,2′-azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    PubMed  CAS  Google Scholar 

  36. Lissi E, Salim-Hanna M, Pascual C et al (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  PubMed  CAS  Google Scholar 

  37. Delmas-Beauvieux MC, Peuchant E, Dumon MF et al (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:163–169

    Article  PubMed  CAS  Google Scholar 

  38. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  40. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  41. Orhan H, Gurer-Orhan H, Vriese E et al (2006) Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes. Toxicol In Vitro 20:1005–1013

    Article  PubMed  CAS  Google Scholar 

  42. Liu J, Wang X, Mori A (1994) Immobilization stress-induced antioxidant defense changes in rat plasma: effect of treatment with reduced glutathione. Int J Biochem 26:511–517

    Article  PubMed  CAS  Google Scholar 

  43. Oishi K, Yokoi M, Maekawa S et al (1999) Oxidative stress and haematological changes in immobilized rats. Acta Physiol Scand 165:65–69

    Article  PubMed  CAS  Google Scholar 

  44. Manoli LP, Gamaro GD, Silveira PP et al (2000) Effect of chronic variate stress on thiobarbituric-acid reactive species and on total radical-trapping potential in distinct regions of rat brain. Neurochem Res 25:915–921

    Article  PubMed  CAS  Google Scholar 

  45. Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  PubMed  CAS  Google Scholar 

  46. King TD, Jope RS (2005) Inhibition of glycogen synthase kinase-3 protects cells from intrinsic but not extrinsic oxidative stress. Neuroreport 16:597–601

    Article  PubMed  CAS  Google Scholar 

  47. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  CAS  Google Scholar 

  48. Kielczykowska M, Pasternak K, Musik I et al (2004) The effect of lithium administration in a diet on the chosen parameters of the antioxidant barrier in rats. Ann Univ Mariae Curie Sklodowska [Med] 59:140–145

    Google Scholar 

  49. Viggiano A, Viggiano D, Viggiano A et al (2003) Quantitative histochemical assay for superoxide dismutase in rat brain. J Histochem Cytochem 51:865–871

    PubMed  CAS  Google Scholar 

  50. Grillo CA, Piroli GG, Rosell DR et al (2003) Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 121:133–140

    Article  PubMed  CAS  Google Scholar 

  51. Bemeur C, Ste-Marie L, Desjardins P et al (2004) Expression of superoxide dismutase in hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 45:1167–1174

    Article  PubMed  CAS  Google Scholar 

  52. Noack H, Lindenau J, Rothe F et al (1998) Differential expression of superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23:285–297

    Article  PubMed  CAS  Google Scholar 

  53. Levine S, Saltzman A (2006) Lithium increases body weight of rats: relation to thymolysis. Prog Neuropsychopharmacol Biol Psychiatry 30:155–158

    Article  PubMed  CAS  Google Scholar 

  54. Husum H, Mathe AA (2002) Early life stress changes concentrations of neuropeptide Y and corticotropin-releasing hormone in adult rat brain. Lithium treatment modifies these changes. Neuropsychopharmacology 27:756–764

    Article  PubMed  CAS  Google Scholar 

  55. Esposito P, Gheorghe D, Kandere K et al (2001) Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res 888:117–127

    Article  PubMed  CAS  Google Scholar 

  56. Calingasan NY, Park LC, Calo LL et al (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 153:599–610

    PubMed  CAS  Google Scholar 

  57. Gong L, Wyatt RJ, Baker I et al (1999) Brain-derived and glial cell line-derived neurotrophic factors protect a catecholaminergic cell line from dopamine-induced cell death. Neurosci Lett 263:153–156

    Article  PubMed  CAS  Google Scholar 

  58. Ikeda O, Murakami M, Ino H et al (2002) Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J Neuropathol Exp Neurol 61:142–153

    PubMed  CAS  Google Scholar 

  59. Manji HK, Duman RS (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 35:5–49

    PubMed  CAS  Google Scholar 

  60. Ceballos-Picot I, Nicole A, Clement M et al (1992) Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper–zinc superoxide dismutase. Mutat Res 275:281–293

    PubMed  CAS  Google Scholar 

  61. Erakovic V, Zupan G, Varljen J et al (2000) Lithium plus pilocarpine induced status epilepticus—biochemical changes. Neurosci Res 36:157–166

    Article  PubMed  CAS  Google Scholar 

  62. Masella R, Di Benedetto R, Vari R et al (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  PubMed  CAS  Google Scholar 

  63. Wesbrot-Lefkowitz M, Reuhl K, Perry B et al (1998) Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Mol Brain Res 53:333–338

    Article  Google Scholar 

  64. Michiels C, Raes M, Toussaint O et al (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  PubMed  CAS  Google Scholar 

  65. Prediger ME, Gamaro GD, Crema LM et al (2004) Estradiol protects against oxidative stress induced by chronic variate stress. Neurochem Res 29:1923–1930

    Article  PubMed  CAS  Google Scholar 

  66. Graumann R, Paris I, Martinez-Alvarado P et al (2002) Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol J Pharmacol 54:573–579

    CAS  Google Scholar 

  67. Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. Neurology 338:97–113

    CAS  Google Scholar 

  68. Focht SJ, Snyder BS, Beard JL et al (1997) Regional distribution of iron, transferrin, ferritin, and oxidatively-modified proteins in young and aged Fischer 344 rat brains. Neuroscience 79:255–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Santana de Vasconcellos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vasconcellos, A.P.S., Nieto, F.B., Crema, L.M. et al. Chronic Lithium Treatment has Antioxidant Properties but does not Prevent Oxidative Damage Induced by Chronic Variate Stress. Neurochem Res 31, 1141–1151 (2006). https://doi.org/10.1007/s11064-006-9139-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9139-2

Keywords

Navigation