Skip to main content
Log in

The Role of the Parafascicular Complex (CM-Pf) of the Human Thalamus in the Neuronal Mechanisms of Selective Attention

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The reactions of 93 neurons in the parafascicular complex (CM-Pf) of the human thalamus were studied by microelectrode recording during stereotaxic neurosurgical operations in patients with spastic torticollis. High reactivity was demonstrated for two previously classified types of neurons with identical irregular (type A) and bursting Ca2+-dependent (type B) activities in response to presentation of relevant verbal stimuli evoking selective attention in humans. Concordant changes in the network activity of A and B neurons were observed, in the form of linked activatory-inhibitory patterns of responses and the appearance, at the moment of presentation of an imperative morpheme of the command stimulus, of rapidly occurring intercellular interactions consisting of local synchronization with simultaneously developing rhythmic oscillatory (3–4 Hz) activity. Data are presented on the existence of a direct connection between these neuronal rearrangements and activation of selective attention, providing evidence for the involvement of the thalamic parafascicular complex (CM-Pf) in the mechanisms of selective attention and processing of relevant verbal information during the preparative period of voluntary actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Batuev, Higher Integrative Systems in the Human Brain [in Russian], Nauka, Leningrad (1981).

    Google Scholar 

  2. N. P. Bekhtereva, Neurophysiological Aspects of Mental Activity in Humans [in Russian], Meditsina, Moscow (1974).

    Google Scholar 

  3. A. I. Gorbachevskaya and O. G. Chivileva, “Morphological analysis of information conduction pathways in the basal ganglia of mammals,” Usp. Fiziol. Nauk., 34, No. 2, 46–63 (2003).

    Google Scholar 

  4. M. N. Livanov, Spatial Organization of the Human Brain [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. A. R. Luriya, Basic Neuropsychology [in Russian], Moscow State University Press, Moscow (1973).

    Google Scholar 

  6. K. Pribram, The Language of the Brain [in Russian], Progress, Moscow (1975).

    Google Scholar 

  7. S. N. Raeva, Microelectrode Studies of Brain Neuron Activity in Humans [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  8. S. N. Raeva, “Neural mechanisms of word formation in voluntary activity,” Fiziol. Cheloveka, 15, No. 3, 40–52 (1989).

    CAS  PubMed  Google Scholar 

  9. S. N. Raeva, “Characteristics of the baseline activity of neurons in the parafascicular complex (CM-Pf) of the human thalamus in conditions of changes in the functional state of the brain,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 6, 756–768 (2004).

    CAS  Google Scholar 

  10. S. N. Raeva, A. O. Lukashev, A. P. Lashin, N. Ya. Vasin, A. L. Kadin, V. A. Shabalov, and N. P. Grokhovskii, “Responses of human thalamus reticular formation neurons in verbal and sensory influences of different signal value,” Neirofiziologiya, 22, No. 4, 441–451 (1990).

    CAS  Google Scholar 

  11. S. N. Raeva, A. O. Lukashev, A. L. Kadin, N. Ya. Vasin, V. A. Shabalov, and N. P. Grokhovskii, “Dynamics of neuronal interactions in the reticular nucleus of the human thalamus in verbal stimuli of different signal value,” Neirofiziologiya, 22, No. 4, 451–459 (1990).

    CAS  Google Scholar 

  12. E. N. Sokolov, “Neurophysiological mechanisms of consciousness,” Zh. Vyssh. Nerv. Deyat., 40, No. 6, 1049–1052 (1990).

    CAS  Google Scholar 

  13. N. F. Suvorov, The Striate System and Behavior [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  14. K. B. Shapovalova, “Activation of the cholinergic system of the striatum improves attention to conditioned reflex stimuli,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, 589–602 (1998).

    CAS  Google Scholar 

  15. G. Alexander, M. DeLong, and P. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Rev. Neurosci., 9, 357–381 (1986).

    CAS  Google Scholar 

  16. J. Cohen, “Prefrontal cortex involved in higher cognitive functions. Introduction,” Neuroimage, 11, 378–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. F. Crick, The Astonishing Hypothesis, Sribuer, New York (1994).

    Google Scholar 

  18. E. Erro, J. Lanciego, and A. Gimenez, “Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat,” Exptl. Brain Res., 127, 162–170 (1999).

    CAS  Google Scholar 

  19. G. Fenelon, J. Yelnick, C. Francois, and G. Percheron, “Central complex of the primate thalamus: a quantitative analysis of neuronal morphology,” J. Comp. Neurol., 342, 463–479 (1994).

    CAS  PubMed  Google Scholar 

  20. H. Groenewegen and H. Berendse, “The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei,” Trends Neurosci., 17, No. 2, 52–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. D. Ingvar, “A top-down model for language perception and production,” in: Downward Processes in the Perception Representation Mechanisms, L. Taddei-Ferretti and C. Musio (eds.), World, Science, Singapore (1994), pp. 108–116.

    Google Scholar 

  22. H. Jasper, “Unspecific thalamocortical relations,” in: Handbook of Physiology: Neurophysiology, American Physiology Society, Washington DC (1960), Vol. 2, pp. 1307–1321.

    Google Scholar 

  23. D. Jeanmonod, M. Magnin, and A. Morel, “Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms,” Brain, 119, 363–375 (1996).

    PubMed  Google Scholar 

  24. D. Joel and I. Weiner, “The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated,” Neurosci., 63, No. 2, 363–379 (1994).

    Article  CAS  Google Scholar 

  25. E. Jones, The Thalamus, Plenum Press, New York (1985).

    Google Scholar 

  26. E. Jones, “Viewpoint. The core and matrix of thalamic organization,” Neurosci., 85, No. 2, 331–345 (1998).

    Article  CAS  Google Scholar 

  27. E. Jones, “Review. The thalamic matrix and thalamocortical synchrony,” Trends Neurosci., 24, No. 10, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Sh. Kinomura, J. Larsson, B. Gulyas, and P. Roland, “Activation by attention in the human reticular formation and thalamic intralaminar nuclei,” Science, 271, 512–515 (1996).

    CAS  PubMed  Google Scholar 

  29. S. Konishi, K. Nakajima, I. Uchida, H. Kikyo, M. Kameyama, and Y. Miyashita, “Common inhibitory mechanism in human inferior prefrontal cortex revealed by event related functional MRI,” Brain, 122, 981–991 (1999).

    Article  PubMed  Google Scholar 

  30. K. Kultas-Ilinsky, V. Leontiev, and P. Whiting, “Expression of 10 GABAa receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry,” Neurosci., 85, No. 1, 179–204 (1998).

    Article  CAS  Google Scholar 

  31. M. Magnin, A. Morel, and D. Jeanmonod, “Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients,” Neurosci., 96, 549–564 (2000).

    Article  CAS  Google Scholar 

  32. N. Matsumoto, J. Minamimoto, A. Graybiel, and M. Kimura, “Neurons in the thalamic CM-Pf complex supply striatal neurons with information about bahaviorally significant sensory events,” J. Neurophysiol., 85, 960–976 (2001).

    CAS  PubMed  Google Scholar 

  33. T. Minamimoto and N. Kimura, “Participation of the thalamic CMPf complex in attentional orienting,” J. Neurophysiol., 87, 3090–3101 (2002).

    PubMed  Google Scholar 

  34. A. Morel, M. Magnin, and D. Jeanmonod, “Multiarchitectonic and stereotaxic atlas of the human thalamus,” J. Comp. Neurol., 387, 588–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. G. Percheron and L. Filion, “Parallel processing in the basal ganglia: up to a point,” Trends Neurosci., 14, 55–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. S. Raeva, “Localization in human thalamus of units triggered during ‘verbal commands’, voluntary movements and tremor,” EEG. Neurophysiol., 63, 160–173 (1986).

    CAS  Google Scholar 

  37. S. Raeva and A. Lukashev, “Unit activity in human thalamic reticularis neurons. II. Activity evoked by significant and non-significant verbal or sensory stimuli,” EEG Neurophysiol., 86, 110–122 (1993).

    CAS  Google Scholar 

  38. P. Rinaldi, R. Young, D. Albe-Fessard, and J. Chodakiewitz, “Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain,” J. Neurosurg., 74, 415–421 (1991).

    CAS  PubMed  Google Scholar 

  39. G. Royce, S. Bromley, and C. Gracco, “Subcortical projections to the centromedian and parafascicular thalamic nuclei in the cat,” J. Comp. Neurol., 306, 126–155 (1991).

    Article  Google Scholar 

  40. G. Schaltenbrandt and P. Baily, Introduction to Stereotaxic with an Atlas of the Human Brain, Thieme, Stuttgart (1959).

    Google Scholar 

  41. M. Scheibel and A. Scheibel, “Patterns of organization in specific and nonspecific thalamic fields,” in: The Thalamus, D. Purpura and M. Yahr (eds.), Columbia University Press, New York (1966), pp. 13–46.

    Google Scholar 

  42. W. Singer, “Synchronization of cortical activity and its putative role in information processing and learning,” Unn. Res. Physiol., 55, 349–361 (1993).

    CAS  Google Scholar 

  43. J. Smythies, “The functional neuroanatomy of awareness: with a focus on the role of various anatomical systems in the control intermodel attention,” Consc. Cognit., 6, No. 4, 455–481 (1997).

    CAS  Google Scholar 

  44. M. Steriade, “Corticothalamic resonance, states of vigilance and mentation,” Neurosci., 101, No. 2, 243–276 (2000).

    Article  CAS  Google Scholar 

  45. J. Shu and D. McCormick, “Inhibitory interactions between ferret thalamic reticular nucleus,” J. Neurophysiol., 87, 2571–2576 (2002).

    CAS  PubMed  Google Scholar 

  46. S. Ullman, “Bottom-up and top-down processing in the visual cortex,” in: Downward Processes in the Perception Representation Mechanisms, L. Taddei-Ferretti and C. Musio (eds.), World Science, Singapore (1998), pp. 145–170.

    Google Scholar 

  47. R. Watson, E. Valenstein, and K. Heilman, “Thalamic neglect. Possible role of medial thalamus and nucleus reticularis in behavior,” Arch. Neurol., 38, 501–506 (1981).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 3, pp. 225–238, March, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeva, S.N. The Role of the Parafascicular Complex (CM-Pf) of the Human Thalamus in the Neuronal Mechanisms of Selective Attention. Neurosci Behav Physiol 36, 287–295 (2006). https://doi.org/10.1007/s11055-006-0015-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0015-y

Key Words

Navigation