Skip to main content

Advertisement

Log in

Diffusional extrasynaptic neurotransmission via glutamate and GABA

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Glutamate and GABA are the main synaptic neurotransmitters in the hippocampus. However, their actions are not limited only to the local postsynaptic zone. These amino acids can be released into the extrasynaptic space by glutamate and GABA reuptake, glial exocytosis, osmotic shock, and spillover (flowing out of the synaptic cleft). Glutamate and GABA receptors are also located on various parts of neurons and glial cells. Depending on the subcellular distribution of these receptors, their subunit composition, and the matabotropic/ionotropic functions, the effects of extracellular glutamate and GABA differ. The present review discusses the general principles of the organization of diffusion-based glutamatergic and GABAergic systems of extrasynaptic neurotransmission, the interaction of these systems with synaptic transmission, and the interaction of diffusion signals with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. S. Bazyan, “Interaction of transmitter and modulator systems in the brain and their possible role in the formation of psychophysiological and psychopathological states,” Usp. Fiziol. Nauk., 32, No. 3, 3–22 (2001).

    Google Scholar 

  2. A. S. Bazyan, “Divergent and convergent mechanisms of the integrative activity of the mammalian brain,” Zh. Vyssh. Nerv. Deyat., 51, No. 4, 514–528 (2001).

    Google Scholar 

  3. O. S. Vinogradova, “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 743–774 (2000).

    Google Scholar 

  4. M. V. Kopanitsya, A. Boichuk, N. O. Lozova, and O. O. Krishtal’, “Interneuronal signaling mediated by transsynaptic diffusion of neurotransmitters,” Fiziol. Zh. (Ukr.), 45, No. 4, 143–147 (1999).

    Google Scholar 

  5. A. V. Sem’yanov, “The effect of activating kainate receptors on tonic and phasic GABAergic inhibition in interneurons of field CA1 in slices of guinea-pig hippocampus,” Zh. Vyssh. Nerv. Deyat., 53, No. 2, 193–201 (2003).

    Google Scholar 

  6. A. V. Sem’yanov, “GABAergic inhibition in the CNS: types of GABA receptors and mechanisms of tonic GABA-mediated inhibitory actions,” Neirofiziol., 34, No. 1, 82–92 (2002).

    Google Scholar 

  7. A. V. Sem’yanov and O. V. Godukhin, “Cellular-molecular mechanisms of focal epileptogenesis,” Usp. Fiziol. Nauk., 32, No. 1, 60–78 (2001).

    Google Scholar 

  8. V. L. Ézrokhi, A. M. Kas’yanov, and V. A. Zosimovskii, “Generation of action potentials in the terminals of Schäffer collaterals during long-term potentiation in field CA1 of the hippocampus,” Zh. Vyssh. Nerv. Deyat., 49, No. 1, 127–131 (1999).

    Google Scholar 

  9. L. F. Agnati, M. Zoli, I. Stromberg, and K. Fuze, “Intercellular communication in the brain: wiring versus volume transmission,” Neurosci., 69, No. 3, 711–726 (1995).

    Google Scholar 

  10. R. Andrade, R. C. Malenka, and R. A. Nicoll, “A G protein couples serotonin and GABAB receptors to the same channels in hippocampus,” Science, 234, No. 4781, 1261–1265 (1986).

    CAS  PubMed  Google Scholar 

  11. R. Anwyl, “Modulation of vertebrate neuronal calcium channels by transmitters,” Brain Res. Brain Res. Rev., 16, No. 3, 265–281 (1991).

    Google Scholar 

  12. A. Araque, N. Li, R. T. Doyle, and P. G. Haydon, “SNARE protein-dependent glutamate release from astrocytes,” J. Neurosci., 20, No. 2, 666–673 (2000).

    Google Scholar 

  13. J. L. Arriza, S. Eliasof, M. P. Kavanaugh, and S. G. Amara, “Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance,” Proc. Natl. Acad. Sci. USA, 94, No. 8, 4155–4160 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. D. Attwell, “Glia and neurons in dialogue,” Nature, 369, No. 6483, 707–708 (1994).

    Google Scholar 

  15. D. Bai, G. Zhu, P. Pennefather, et al., “Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid (A) receptors in hippocampal neurons,” Mol. Pharmacol., 59, No. 4, 814–824 (2001).

    Google Scholar 

  16. M. J. Banks and R. A. Pearce, “Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells,” J. Neurosci., 20, No. 3, 937–948 (2000).

    Google Scholar 

  17. L. Barakat and A. Bordey, “GAT-1 and reversible GABA transport in Bergmann glia in slices,” J. Neurophysiol., 88, No. 3, 1407–1419 (2002).

    Google Scholar 

  18. E. M. Branes, Jr., “Assembly and intracellular trafficking of GABAA receptors,” Int. Rev. Neurobiol., 48, 1–29 (2001).

    Google Scholar 

  19. A. Baude, Z. Nusser, J. D. Roberts, et al., “The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction,” Neuron, 11, No. 4, 771–787 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. P. V. Belan and P. G. Kostyuk, “Glutamate-receptor-induced modulation of GABAergic synaptic transmission in the hippocampus,” Pflugers Arch., 444, No. 1, 26–37 (2002).

    Google Scholar 

  21. Y. Ben-Ari, “Excitatory actions of GABA during development: the nature of the nurture,” Nat. Rev. Neurosci., 3, No. 9, 728–739 (2002).

    Google Scholar 

  22. Y. Ben-Ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, “Giant synaptic potentials in immature rat CA3 hippocampal neurones,” J. Physiol., 416, 303–325 (1989).

    Google Scholar 

  23. T. Berger, T. Muller, and H. Kennenmann, “Developmental regulation of ion channels and receptors on glial cells,” Perspect. Dev. Neurobiol., 2, No. 4, 347–356 (1995).

    Google Scholar 

  24. D. E. Bergles, J. S. Diamond, and C. E. Jahr, “Clearance of glutamate inside the synapse and beyond,” Curr. Opin. Neurobiol., 9, No. 3, 293–298 (1999).

    Google Scholar 

  25. D. E. Bergles, J. A. Dzubay, and C. E. Jahr, “Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate,” Proc. Natl. Acad. Sci. USA, 94, No. 26, 14821–14825 (1997).

    Google Scholar 

  26. D. E. Bergles and C. E. Jahr, “Synaptic activation of glutamate transporters in the hippocampal astrocytes,” Neuron, 19, No. 6, 1297–1308 (1997).

    Google Scholar 

  27. P. Bezzi, G. Carmignoto, L. Pasti, et al., “Prostaglandins stimulate calcium-dependent glutamate release in astrocytes,” Nature, 391, No. 6664, 281–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. P. Bezzi and A. Volterra, “A neuron-glia signalling network in the active brain,” Curr. Opin. Neurobiol., 11, No. 3, 387–394 (2001).

    Google Scholar 

  29. J. Boguszewicz, B. Skrajny, J. Kohli, and S. H. Roth, “Evidence that GABA, serotonin, and norepinephrine are involved in the modulation of in vitro rhythmical activity in rat hippocampal slices,” Can. J. Physiol. Pharmacol., 74, No. 12, 1322–1326 (1996).

    Google Scholar 

  30. A. Bouron, “Modulation of spontaneous quantal release of neuro-transmitters in the hippocampus,” Progr. Neurobiol., 63, No. 6, 613–635 (2001).

    Google Scholar 

  31. D. Bowie and M. L. Mayer, “Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block,” Neuron, 15, No. 2, 453–462 (1995).

    Google Scholar 

  32. D. A. Brown, P. R. Adams, A. J. Higgins, and S. Marsh, “Distribution of GABA receptors and GABA carriers in the mammalian nervous system,” J. Physiol., 75, No. 6, 667–671 (1979).

    Google Scholar 

  33. P. E. Castillo, R. C. Malenka, and R. A. Nicoll, “Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons,” Nature, 388, No. 6638, 182–186 (1997).

    Google Scholar 

  34. F. A. Chaudhry, K. P. Lehre, M. van Lookeren Campagne, et al., “Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry,” Neuron, 15, No. 3, 711–720 (1995).

    Google Scholar 

  35. E. Cherubini and F. Conti, “Generating diversity at GABAergic synapses,” Trends Neurosci., 24, No. 3, 155–162 (2001).

    Google Scholar 

  36. B. A. Clark and S. G. Cull-Candy, “Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse,” J. Neurosci., 22, No. 11, 4428–4436 (2002).

    Google Scholar 

  37. D. F. Condorelli, F. Conti, V. Gallo, et al., “Expression and functional analysis of glutamate receptors in glial cells,” Adv. Exptl. Med. Biol., 468, 49–67 (1999).

    Google Scholar 

  38. R. Cossart, J. Epsztein, R. Tyzio, et al., “Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons,” Neuron, 35, No. 1, 147–159 (2002).

    Google Scholar 

  39. R. Cossart, M. Esclapez, J. C. Hirsch, et al., “GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells,” Nat. Neurosci., 1, No. 6, 470–478 (1998).

    Google Scholar 

  40. R. Cossart, R. Tyzio, C. Dinocourt, et al., “Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons,” Neuron, 29, No. 2, 497–508 (2001).

    Google Scholar 

  41. E. Costa, “From GABA(A) receptor diversity emerges a unified vision of GABAergic interneurons,” Ann. Rev. Pharmacol. Toxicol., 38, 321–350 (1998).

    Google Scholar 

  42. J. E. Coyle, S. Qamar, K. R. Rajashankar, and D. B. Nikolov, “Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding,” Neuron, 33, No. 1, 63–74 (2002).

    Google Scholar 

  43. N. O. Dalby and I. Mody, “The process of epileptogenesis: a pathophysiological approach,” Curr. Opin. Neurol., 14, No. 2, 187–192 (2001).

    Google Scholar 

  44. N. C. Danbolt, “Glutamate uptake,” Progr. Neurobiol., 65, No. 1, 1–105 (2001).

    Article  Google Scholar 

  45. J. S. Diamond and C. E. Jahr, “Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation,” J. Neurophysiol., 83, No. 5, 2835–2843 (2000).

    Google Scholar 

  46. D. Dietrich, H. Beck, T. Kral, et al., “Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors,” Brain Res., 767, No. 2, 220–227 (1997).

    Google Scholar 

  47. D. Dietrich, T. Kral, H. Clusmann, et al., “Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus,” Neuropharmacology, 42, No. 3, 297–305 (2002).

    Google Scholar 

  48. D. DiGregorio, Z. Nusser, and R. Silver, “Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebella synapse,” Neuron, 35, No. 3, 521–533 (2002).

    Google Scholar 

  49. Ael D. El-Husseini, E. Schnell, S. Dakoji, et al., “Synaptic strength regulated by palmitate cycling on PSD-95,” Cell, 108, No. 6, 849–863 (2002).

    Google Scholar 

  50. D. Engel, D. Schmitz, T. Gloveli, et al., “Laminar difference in GABA uptake and GAT-1 expression in rat CA1,” J. Physiol., 512, No. 3, 643–649 (1998).

    Google Scholar 

  51. J. E. Evans, A. Frostholm, and A. Rotter, “Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges,” J. Comp. Neurol., 376, No. 3, 431–446 (1996).

    Google Scholar 

  52. R. S. Fisher and B. E. Alger, “Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice,” J. Neurosci., 4, No. 5, 1312–1323 (1984).

    Google Scholar 

  53. M. Frerking, R. C. Malenka, and R. A. Nicoll, “Synaptic activation of kainate receptors on hippocampal interneurons,” Nat. Neurosci., 1, No. 6, 479–486 (1998).

    Google Scholar 

  54. M. Frerking, C. C. Petersen, and R. A. Nicoll, “Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus,” Proc. Natl. Acad. Sci. USA, 96, No. 22, 12917–12922 (1999).

    Google Scholar 

  55. A. Furuta, L. J. Martin, C. L. Lin, et al., “Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4,” Neurosci., 81, No. 4, 1031–1042 (1997).

    Google Scholar 

  56. A. Gadea and A. M. Lopez-Colome, “Glial transporters for glutamate, glycine, and GABA: II. GABA transporter,” J. Neurosci. Res., 63, No. 6, 461–468 (2001).

    Google Scholar 

  57. H. L. Gaspary, W. Wang, and G. B. Richerson, “Carrier-mediated GABA release activates GABA receptors on hippocampal neurons,” J. Neurophysiol., 80, No. 1, 270–281 (1998).

    Google Scholar 

  58. G. E. Hardingham, Y. Fukunaga, and H. Bading, “Extrasynaptic NMDA receptors oppose synaptic NMDA receptors by triggering CREB shut-off and cell death pathways,” Nat. Neurosci., 5, No. 5, 405–414 (2002).

    Google Scholar 

  59. B. Z. Harris and W. A. Lim, “Mechanism and role of PDZ domains in signaling complex assembly,” J. Cell Sci., 114, No. 18, 3219–3231 (2001).

    Google Scholar 

  60. L. Haugh-Scheidt, R. P. Malchow, and H. Ripps, “GABA transport and calcium dynamics in horizontal cells from the skate retina,” J. Physiol., 488, No. 3, 565–576 (1995).

    Google Scholar 

  61. M. Hausser and B. A. Clark, “Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration,” Neuron, 19, No. 3, 665–678 (1997).

    Google Scholar 

  62. Y. He, W. G. Janssen, J. D. Rothstein, and J. H. Morrison, “Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus,” J. Comp. Neurol., 418, No. 3, 255–269 (2000).

    Google Scholar 

  63. L. Hertz, L. Peng, and J. C. Lai, “Functional studies in cultured astrocytes,” Methods, 16, No. 3, 293–310 (1998).

    Google Scholar 

  64. W. Hevers, E. R. Korpi, and H. Luddens, “Assembly of functional alpha6beta3gamma2delta GABA(A) receptors in vitro,” Neuro-report, 11, No. 18, 4103–4106 (2000).

    Google Scholar 

  65. D. R. Hill, N. G. Bowery, and A. L. Hudson, “Inhibition of GABAB receptor binding by guanyl nucleotides,” J. Neurochem., 42, No. 3, 652–657 (1984).

    Google Scholar 

  66. J. S. Isaacson, “Spillover in the spotlight,” Curr. Biol., 10, No. 13, R475–R477 (2000).

    Google Scholar 

  67. J. S. Isaacson, J. M. Solis, and R. A. Nicoll, “Local and diffuse synaptic actions of GABA in the hippocampus,” Neuron, 10, No. 2, 165–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. A. Jansson, A. Lippoldt, T. Mazel, et al., “Long distance signalling in volume transmission. Focus on clearance mechanisms,” Progr. Brain Res., 125, 399–413 (2000).

    Google Scholar 

  69. K. A. Jones, B. Borowsky, J. A. Tamm, et al., “GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2,” Nature, 396, No. 6712, 674–679 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. H. Kamiya and S. Ozawa, “Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fiber synapse,” J. Physiol., 523, No. 3, 653–665 (2000).

    Google Scholar 

  71. B. I. Kammer and E. Marva, “Efflux of L-glutamate by synaptic plasma membrane vesicles solated from rat brain,” Biochemistry, 21, No. 13, 3143–3147 (1982).

    Google Scholar 

  72. J. N. Kew, J. M. Ducarre, M. C. Pflimlin, et al., “Activity-dependent presynaptic autoinhibition by group II metabotropic glutamate receptors at the perforant path inputs to the dentate gyrus and CA1,” Neuropharmacology, 40, No. 1, 20–27 (2001).

    Google Scholar 

  73. B. S. Khakh and G. Henderson, “Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels,” J. Auton. Nerv. Syst., 81, No. 1–3, 110–121 (2000).

    Google Scholar 

  74. H. K. Kimelberg, S. K. Goderie, S. Higman, et al., “Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures,” J. Neurosci., 10, No. 5, 1583–1591 (1990).

    Google Scholar 

  75. H. K. Kimelberg and A. A. Mongin, “Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology,” Contrib. Nephrol., 123, 240–257 (1998).

    Google Scholar 

  76. M. Kneussel, “Dynamic regulation of GABA(A) receptors at synaptic sites,” Brain Res. Brain Res. Rev., 39, No. 1, 74–83 (2002).

    Google Scholar 

  77. M. V. Kopanitsa, “Extrasynaptic receptors of neurotransmitters: distribution, mechanisms of activation, and physiological role,” Neirofiziologiya, 29, 357–365 (1997).

    Google Scholar 

  78. D. M. Kullmann, “Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity,” Neuron, 32, No. 4, 561–564 (2001).

    Google Scholar 

  79. D. M. Kullmann, “Spillover and synaptic crosstalk mediated by glutamate acid and GABA in the mammalian brain,” Progr. Brain Res., 125, 339–351 (2000).

    Google Scholar 

  80. D. M. Kullmann and F. Asztely, “Extrasynaptic glutamate spillover in the hippocampus: evidence and implications,” Trends Neurosci., 21, No. 1, 8–14 (1998).

    Google Scholar 

  81. D. M. Kullmann and A. Semyanov, “Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: novel mechanisms regulating hippocampal excitability,” Epilepsia, 43, Suppl. 5, 174–178 (2002).

    Google Scholar 

  82. N. Kunishima, Y. Shamada, Y. Tsuji, et al., “Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor,” Nature, 407, No. 6807, 971–977 (2000).

    Google Scholar 

  83. P. R. Laming, H. Kimelberg, S. Robinson, et al., “Neuronal-glial interactions and behaviour,” Neurosci. Biobehav. Res., 24, No. 3, 295–340 (2000).

    Google Scholar 

  84. K. P. Lehre, L. M. Levy, O. P. Ottersen, et al., “Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations,” J. Neurosci., 15, No. 3, Pt. 1, 1835–1853 (1995).

    Google Scholar 

  85. K. P. Lehre and D. A. Rusakov, “Asymmetry of glia near central synapses favors presynaptically directed glutamate escape,” Biophys. J., 83, No. 1, 125–134 (2002).

    Google Scholar 

  86. J. Lerma, A. V. Paternain, J. R. Naranjo, and B. Mellstrom, “Functional kainate-selective glutamate receptors in cultured hippocampal neurons,” Proc. Natl. Acad. Sci. USA, 90, No. 24, 11688–11692 (1993).

    Google Scholar 

  87. D. D. Loo, S. Eskandari, K. J. Boorer, et al., “Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1,” J. Biol. Chem., 275, No. 48, 37414–37422 (2000).

    Google Scholar 

  88. C. C. Lu and D. W. Hilgemann, “GAT1 (GABA:Na+:Cl- ) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches,” J. Gen. Physiol., 114, No. 3, 429–444 (1999).

    Google Scholar 

  89. R. Lujan, Z. Nusser, J. D. Roberts, et al., “Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus,” Eur. J. Neurosci., 8, No. 7, 1488–1500 (1996).

    Google Scholar 

  90. T. A. Macek, D. G. Winder, R. W. Gereau, et al., “Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses,” J. Neurophysiol., 76, No. 6, 3798–3806 (1996).

    Google Scholar 

  91. S. Mager, Y. Cao, and H. A. Lester, “Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes,” Meth. Enzymol., 296, 551–566 (1998).

    Google Scholar 

  92. R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Ann. Rev. Neurosci., 25, 103–126 (2002).

    Google Scholar 

  93. L. J. Martin, A. M. Brambrink, C. Lehmann, et al., “Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum,” Ann. Neurol., 42, No. 3, 335–348 (1997).

    Google Scholar 

  94. A. K. Mehta and M. K. Ticku, “An update on GABA(A) receptors,” Brain Res. Brain Res. Rev., 29, No. 2–3, 196–217 (1999).

    Google Scholar 

  95. I. M. Mintz and B. P. Bean, “GABA(B) receptor inhibition of P-type Ca2+ channels in central neurons,” Neuron, 10, No. 5, 889–898 (1993).

    Google Scholar 

  96. U. Misgeld, M. Bijak, and W. Jarolimek, “A physiological role for GABA(B) receptors and the effects of baclofen in the mammalian central nervous system,” Progr. Neurobiol., 46, No. 4, 423–462 (1995).

    Google Scholar 

  97. H. Mohler and J. M. Fritschy, “GABA(B) receptors make it to the top as dimers,” Trends Pharmacol. Sci., 20, No. 3, 87–89 (1999).

    Google Scholar 

  98. M. Nishkova, M. Hirouchi, and K. Kuriyama, “Functional coupling of Gi subtype with GABA(B) receptor/adenylyl cyclase system: analysis using a reconstituted system with purified GTP-binding protein from bovine cerebral cortex,” Neurochem. Int., 31, No. 1, 21–25 (1997).

    Google Scholar 

  99. Z. Nusser and I. Mody, “Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells,” J. Neurophysiol., 87, No. 5, 2624–2628 (2002).

    Google Scholar 

  100. Z. Nusser, W. Sieghart, and P. Somogyi, “Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells,” J. Neurosci., 18, No. 5, 1693–1703 (1998).

    Google Scholar 

  101. S. H. Oliet, R. Piet, and D. A. Poulain, “Control of glutamate clearance and synaptic efficacy by glial coverage of neurons,” Science, 292, No. 5518, 923–926 (2001).

    Google Scholar 

  102. S. Ozawa, H. Kamiya, and K. Tsuzuki, “Glutamate receptors in the mammalian central nervous system,” Progr. Neurobiol., 54, No. 5, 581–618 (1998).

    Google Scholar 

  103. V. Parpura, T. A. Basarsky, F. Liu, et al., “Glutamate-mediated astrocyte-neuron signalling,” Neuron, 369, No. 6483, 744–747 (1994).

    Google Scholar 

  104. D. K. Patneau and M. L. Mayer, “Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors,” J. Neurosci., 10, No. 7, 2385–2399 (1990).

    Google Scholar 

  105. J. P. Pin and R. Duvoisin, “The metabotropic glutamate receptors: structure and functions,” Neuropharmacology, 34, No. 1, 1–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. C. Plachez, N. C. Danbolt, and M. Recasens, “Transient expression of the glial glutamate transporters GLAST and GLT in hippocampal neurons in primary culture,” J. Neurosci. Res., 59, No. 5, 587–593 (2000).

    Google Scholar 

  107. T. Rauen and B. I. Kanner, “Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae,” Neurosci. Lett., 169, No. 1–2, 137–140 (1994).

    Google Scholar 

  108. A. Rodriguez-Moreno, O. Herreras, and J. Lerma, “Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus,” Neuron, 19, No. 4, 893–901 (1997).

    Google Scholar 

  109. A. Rodriguez-Moreno and J. Lerma, “Kainate receptor modulation of GABA release involves a metabotropic function,” Neuron, 20, No. 6, 1211–1218 (1998).

    Google Scholar 

  110. A. Rodriguez-Moreno, J. C. Lopez-Garcia, and J. Lerma, “Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons,” Proc. Natl. Acad. Sci. USA, 97, No. 3, 1293–1298 (2000).

    Google Scholar 

  111. D. A. Rusakov and D. M. Kullmann, “Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation,” J. Neurosci., 18, No. 9, 3158–3170 (1998).

    Google Scholar 

  112. P. Sah, S. Hestrin, and R. A. Nicoll, “Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons,” Science, 246, No. 4931, 815–818 (1989).

    Google Scholar 

  113. M. Scanziani, “GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity,” Neuron, 25, No. 3, 673–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. M. Scanziani, B. H. Gahwiler, and S. Charpak, “Target cell-specific modulation of transmitter release at terminals from a single axon,” Proc. Natl. Acad. Sci. USA, 95, No. 20, 12004–12009 (1998).

    Google Scholar 

  115. M. Scanziani, P.A. Salin, K. E. Vogt, et al., “Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors,” Nature, 385, No. 6617, 630–634 (1997).

    Google Scholar 

  116. D. Schmitz, M. Frerking, and R. A. Nicoll, “Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses,” Neuron, 27, No. 2, 327–338 (2000).

    Google Scholar 

  117. D. Schmitz, J. Mellor, and R. A. Nicoll, “Presynaptic kainate receptor modulation of frequency facilitation at hippocampal mossy fiber synapses,” Science, 291, No. 5510, 1972–1976 (2001).

    Google Scholar 

  118. R. D. Schwartz-Bloom and R. Sah, “Gamma-aminobutyric acid(A) neurotransmission and cerebral ischemia,” J. Neurochem., 77, No. 2, 353–371 (2001).

    Google Scholar 

  119. A. Semyanov and D. M. Kullmann, “Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons,” Nat. Neurosci., 4, No. 7, 718–723 (2001).

    Google Scholar 

  120. A. Semyanov and D. M. Kullmann, “Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors,” Neuron, 25, No. 3, 663–672 (2000).

    Google Scholar 

  121. A. V. Semyanov, M. C. Walker, and D. M. Kullmann, “GABA uptake regulates cortical excitability via cell type-specific tonic inhibition,” Nat. Neurosci., 6, No. 5, 484–490 (2003).

    Google Scholar 

  122. M. Sheng and T. Nakagawa, “Neurobiology: glutamate receptors on the move,” Nature, 417, No. 6889, 601–602 (2002).

    Google Scholar 

  123. M. Sheng and C. Sala, “PDZ domains and the organization of supramolecular complexes,” Ann. Rev. Neurosci., 24, 1–29 (2001).

    Google Scholar 

  124. R. Shigemoto, A. Kinoshita, E. Wada, et al., “Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus,” J. Neurosci., 17, No. 19, 7503–7522 (1997).

    Google Scholar 

  125. R. Shigemoto, A. Kulik, J. D. Roberts, et al., “Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone,” Nature, 381, No. 6582, 523–525 (1996).

    Google Scholar 

  126. H. H. Sitte, E. A. Singer, and P. Scholze, “Bi-directional transport of GABA in human embryonic kidney (HFK-293) cells stably expressing the rat GABA transporter GAT-1,” Brit. J. Pharmacol., 135, No. 1, 93–102 (2002).

    Google Scholar 

  127. I. Soltesz and Z. Nusser, “Background inhibition to the fore,” Nature, 409, No. 6816, 24–27 (2001).

    Google Scholar 

  128. G. Sperk, C. Schwarzer, K. Tsunashima, et al., “GABA(A) receptor subunits in the rat hippocampus. I. Immunocytochemical distribution of 13 subunits,” Neurosci., 80, No. 4, 987–1000 (1997).

    Google Scholar 

  129. S. F. Stasheff, D. D. Mott, and W. A. Wilson, “Axon terminal hyper-excitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors,” J. Neurophysiol., 70, No. 3, 976–984 (1993).

    Google Scholar 

  130. B. M. Stell and I. Mody, “Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons,” J. Neurosci., 22, No. 10, RC223 (2002).

    Google Scholar 

  131. K. Strange, F. Emma, and P. S. Jackson, “Cellular and molecular physiology of volume-sensitive anion channels,” Amer. J. Physiol., 270, No. 3, Part 1, 711–730 (1996).

    Google Scholar 

  132. M. Szatkowski, B. Barbour, and D. Attwell, “Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake,” Nature, 348, No. 6300, 443–446 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. M. Szatkowski, B. Barbour, and D. Attwell, “The potassium-dependence of excitatory amino acid transport: resolution of a paradox,” Brain Res., 555, No. 2, 343–345 (1991).

    Google Scholar 

  134. T. Taira, K. Lamsa, and K. Kaila, “Post-tetanic excitation mediated by GABA(A) receptors in rat CA1 pyramidal neurons,” J. Neurophysiol., 77, No. 4, 2213–2218 (1997).

    Google Scholar 

  135. H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki, “GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier,” J. Cereb. Blood Flow Metab., 21, No. 10, 1232–1239 (2001).

    Google Scholar 

  136. S. Tomita, R. A. Nicoll, and D. S. Bredt, “PDZ protein interactions regulating glutamate receptor function and plasticity,” J. Cell Biol., 153, No. 5, F19–F24 (2001).

    Google Scholar 

  137. K. R. Tovar and G. L. Westbrook, “Mobile NMDA receptors at hippocampal synapses,” Neuron, 34, No. 2, 255–264 (2002).

    Google Scholar 

  138. J. A. Van Hooft, R. Guiffrida, M. Blatow, and H. Monyer, “Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons,” J. Neurosci., 20, No. 10, 3544–3551 (2000).

    Google Scholar 

  139. S. Vesce, P. Bezzi, and A. Volterra, “Synaptic transmission with the glia,” News Physiol. Sci., 16, 178–184 (2001).

    Google Scholar 

  140. M. Vignes and G. L. Collingridge, “The synaptic activation of kainate receptors,” Nature, 388, No. 6638, 179–182 (1997).

    Google Scholar 

  141. O. S. Vinogradova, “Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information,” Hippocampus, 11, No. 5, 578–598 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. H. Vitten and J. S. Isaacson, “Synaptic transmission: exciting times for presynaptic receptors,” Curr. Biol., 11, No. 17, R695–R697 (2001).

    Google Scholar 

  143. E. S. Vizi, “Different temperature dependence of carrier-dependence (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release,” Neurochem. Int., 33, No. 4, 359–366 (1998).

    Google Scholar 

  144. E. S. Vizi, “Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system,” Pharmacol. Rev., 52, No. 1, 63–89 (2000).

    Google Scholar 

  145. E. S. Vizi and J. P. Kiss, “Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions,” However, 8, No. 6, 566–607 (1998).

    Google Scholar 

  146. G. Von Blankenfeld and H. Kettenmann, “Glutamate and GABA receptors in vertebrate glial cells,” Mol. Neurobiol., 5, No. 1, 31–43 (1991).

    Google Scholar 

  147. D. G. Winder and N. L. Schramm, “Plasticity and behavior: new genetic techniques to address multiple forms and functions,” Physiol. Behav., 73, No. 5, 763–780 (2001).

    Google Scholar 

  148. Y. Wu, W. Wang, and G. B. Richerson, “GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter,” J. Neurosci., 21, No. 8, 2630–2639 (2001).

    Google Scholar 

  149. M. Yokoi, K. Kobayashi, T. Manabe, et al., “Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2,” Science, 273, No. 5275, 645–647 (1996).

    CAS  PubMed  Google Scholar 

  150. M. Yoshino, S. Sawada, C. Yamamoto, and H. Kamiya, “A metabotropic glutamate receptor agonist DCG-IV suppresses synaptic transmission at mossy fiber pathway of the guinea pig hippocampus,” Neurosci. Lett., 207, No. 1, 70–72 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti, Vol. 54, No. 1, pp. 68–84, January–February, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sem’yanov, A.V. Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neurosci Behav Physiol 35, 253–266 (2005). https://doi.org/10.1007/s11055-005-0051-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0051-z

KEY WORDS

Navigation