Skip to main content
Log in

Gold nanoparticle shape effects on human serum albumin corona interface: a molecular dynamic study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, there has been considerable progress in the design and study of gold nanoparticles that geared toward biomedical applications. In most imaging and therapeutic applications, gold nanoparticles enter the bloodstream directly by intravenous administration forming molecular complexes with encountered proteins termed as the protein corona. Since albumin is the most abundant protein in human blood plasma, in this study, gold nanoparticle interactions and its shape effects on human serum albumin were studied by molecular dynamic simulation. These results revealed that in the interaction of albumin with any shapes of gold nanoparticle, human serum albumin unfolds and helix amount decreases. Cubic gold nanoparticles showed stronger unfolding effects on the albumin than the spherical gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  Google Scholar 

  • Ahn S, Jung S, Lee S (2013) Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules 18(5):5858–5890

    Article  Google Scholar 

  • Bertrand G (2002) Reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101(1–3):219–260

    Google Scholar 

  • Boyoglu C, He Q, Willing G, Barnum Se, Dennis V, Pillai S, Singh S (2013) Microscopic studies of various sizes of gold nanoparticles and their cellular localizations. ISRN Nanotechnol. doi:10.1155/2013/123838

    Google Scholar 

  • Brancolini G, Kokh DB, Calzolai L, Wade R, Corni S (2012) Docking of ubiquitin to gold nanoparticles. ACS Nano 6(11):9863–9878

    Article  Google Scholar 

  • Der S, Lindahl E, Hess B, Groenhof G, Mark A, Berendsen H (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  • Ding F, Radic S, Choudhary P, Chen R, Brown J, Ke P (2013) Direct observation of silver nanoparticle-ubiquitin corona formation. Nanoscale. doi:10.1039/c3nr02147e

    Google Scholar 

  • Ghuman J, Zunszain P, Petitpas I, Bhattacharya A, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353(1):38–52

    Article  Google Scholar 

  • Heinz H, Vaia R, Farmer B, Naik R (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J Phys Chem C 112(44):17281–17290

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  Google Scholar 

  • Hoefling M, Iori F, Corni S, Gottschalk KE (2010) The conformations of aminoacids on a gold (111) surface. Chem Phys Chem 11(8):1763–1767

    Article  Google Scholar 

  • Hoefling M, Susanna M, Stefano C, Kay E (2011) Interaction of b-Sheet folds with a gold surface. PLoS ONE. doi:10.1371/journal.pone.0020925

    Google Scholar 

  • Huang X, Jain P, Sayed I, Sayed M (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681–693

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  • Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–149

    Article  Google Scholar 

  • Jorgensen W, Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  Google Scholar 

  • Juan S, Dan L, Jing X, Shawn W, Qiang W, Hong C (2012) Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chin Sci Bull 57(10):1109–1115

    Article  Google Scholar 

  • Kahn K, Bruice T (2002) Parameterization of OPLS-AA force field for the conformational analysis of macro cyclic polypeptides. J Comput Chem 23(10):977–996

    Article  Google Scholar 

  • Keshavarz F, Alavianmehr M, Yousefi R (2012) Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin. Mol Biol Res Commun 1(2):65–73

    Google Scholar 

  • Lee k, Ytreberg F (2012) Effect of gold nanoparticle conjugation on peptide dynamics and structure. Entropy 14(4):630–641

    Article  Google Scholar 

  • Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. doi:10.3402/nano.v1i0.4889

    Google Scholar 

  • Mahmoudi M, Kalhor H, Laurent S, Lynch I (2013) Protein fibrillation and nanoparticle interactions: opportunities and Challenges. Nanoscale 5(7):2570–2588

    Article  Google Scholar 

  • Pan H, Qin M, Meng W, Cao Y, Wang W (2012) How do proteins unfold upon adsorption on nanoparticle surfaces? Langmuir 28(35):12779–12787

    Article  Google Scholar 

  • Pantusa M, Bartucci R (2010) Kinetics of stearic acid transfer between human serum albumin and sterically stabilized liposomes. Eur Biophys J 39(9):1351–1357

    Article  Google Scholar 

  • Pantusa M, Sportelli L, Bartucci R (2005) Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance. Biophys Chem 114(2):121–127

    Article  Google Scholar 

  • Pekka M, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    Article  Google Scholar 

  • Rajeshwari A, Pakrashi S, Dalai S, Iswarya V, Chandrasekaran N, Mukherjee A (2013) Spectroscopic studies on the interaction of bovine serum albumin with Al2O3 nanoparticle. J Lumin 145:859–865

    Article  Google Scholar 

  • Sen T, Mandal S, Haldar S, Chattopadhyay K, Patra A (2011) Interaction of gold nanoparticle with human serum albumin protein using surface energy transfer. J Phys Chem C 115:24037–24044

    Article  Google Scholar 

  • Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035

    Article  Google Scholar 

  • Shao S, Xiaolei Z, Dun P, Hao P, Lianhui W, Chunhai F, Wei H (2013) Design and applications of gold nanoparticle conjugates by exploiting biomolecule–gold nanoparticle interactions. Nanoscale 5(7):2589–2599

    Article  Google Scholar 

  • Sobczak-kupiec A, Malina D, Zimowska M, Wzorek Z (2011) Characterization of gold nanoparticles for various medical applications. Dig J Nanomater Bios 6(2):803–808

    Google Scholar 

  • Tsai D, Del F, Keene A, Tyner K, Cuspie R, Cho T, Zachariah M, Hackley V (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27(6):2464–2477

    Article  Google Scholar 

  • Vigderman L, Zubarev E (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65(5):663–676

    Article  Google Scholar 

  • Yang Z, Zhao Y (2007) Adsorption of His-tagged peptide to Ni, Cu and Au (100) surfaces: molecular dynamics simulation. Eng Anal Bound Elem 31:402–409

    Article  Google Scholar 

  • Zhang D, Oara N, Hui W, Virany M, Aoune B, Michael P, Jeffrey D, Pernilla W, Naomi J (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9(2):666–671

    Article  Google Scholar 

  • Zhen X, Shi-Ling Y, Hui Y, Cheng-Bu L (2011) Adsorption of histidine and histidine-containing peptides on Au (1 1 1): a molecular dynamics study. Colloids Surf A 380:135–142

    Article  Google Scholar 

Download references

Acknowledgments

This paper is part of a PhD thesis in Nanomedicine by Mrs. Fatemeh Ramezani. Financial support was provided by Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massoud Amanlou or Hashem Rafii-Tabar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, F., Amanlou, M. & Rafii-Tabar, H. Gold nanoparticle shape effects on human serum albumin corona interface: a molecular dynamic study. J Nanopart Res 16, 2512 (2014). https://doi.org/10.1007/s11051-014-2512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2512-1

Keywords

Navigation