Skip to main content
Log in

Exploring the development of a decision support system (DSS) to prioritize engineered nanoparticles for risk assessment

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Engineered nanoparticles (ENPs) have gained huge commercial interest because of their unique and size-related physicochemical properties. The diversity and complexity of ENPs is increasing with the introduction of next generation nanoparticles. The current approaches are not able to assess the safety of all types and applications of ENPs. Therefore, we are developing a decision support system (DSS) that helps to identify those ENPs and applications that should get priority in the risk assessment. This DSS smartly uses existing knowledge in publicly available databases. With the aid of vocabularies, knowledge rules and logic reasoning new knowledge will be derived. In this paper, the procedure for a DSS is described. Since this system is open by design, others can re-use and extend the DSS content, and newly developed DSS tools can be easily accommodated, which will make the DSS more effective over the years. Data of newly emerging studies will be used for the validation of the DSS. The results will benefit regulating authorities and scientists focussing on the development of inherently safe ENPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. http://cordis.europa.eu/fp7/cooperation/nanotechnology_en.html.

  2. http://www.nanonextnl.nl/.

  3. http://www.enpra.eu/.

  4. http://www.inlivetox.eu/.

  5. http://www.nanopolytox.eu/.

  6. http://www.nanolyse.eu/.

  7. https://secure.fera.defra.gov.uk/nanodetect/.

  8. http://www.qnano-ri.eu/.

  9. http://www.marina-fp7.eu/.

  10. http://www.nanovalid.eu/.

References

  • Beaudrie CEH, Kandlikar M (2011) Horses for courses: risk information and decision making in the regulation of nanomaterials. J Nanopart Res 13(4):1477–1488. doi:10.1007/s11051-011-0234-1

    Article  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharm 53(1):52–62

    Article  CAS  Google Scholar 

  • Bouwmeester H, Lynch I, Marvin HJP, Dawson K, Berges M, Braguer D, Byrne H, Casey A, Chambers G, Clift M, Elia G, Fernandes T, Fjellsbø L, Hatto P, Juillerat L, Klein C, Kreyling W, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5(1):11

    Article  Google Scholar 

  • Brouwer DH (2012) Control banding approaches for nanomaterials. Ann Occup Hyg 56(5):506–514. doi:10.1093/annhyg/mes039

    Google Scholar 

  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time Evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632. doi:10.1021/nn901372t

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggard T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 46(30):5754–5756

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  CAS  Google Scholar 

  • Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J, Kampers F, Klein C, Radomski M, Stamm H, Wijnhoven S, Wildemann T (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food chem Toxicol 50(6):2224–2242. doi:10.1016/j.fct.2011.12.029 An international journal published for the British Industrial Biological Research Association

    Article  CAS  Google Scholar 

  • Domingue J, Fensel D, Hendler JA (2011) Handbook of semantic web technologies. Springer reference, Springer, New York

    Book  Google Scholar 

  • EFSA (2011) EFSA Scientific Committee. Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9(5):36. doi:10.2903/j.efsa.2011.2140

    Google Scholar 

  • Fauss E, Gorman ME, Swami N (2009) Using expert elicitation to prioritize resource allocation for risk identification for nanosilver. J Law Med Ethics 37(4):770–780. doi:10.1111/j.1748-720X.2009.00447.x

    Article  Google Scholar 

  • Flari V, Chaudhry Q, Neslo R, Cooke R (2011) Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products. J Nanopart Res 13(5):1813–1831. doi:10.1007/s11051-011-0335-x

    Article  CAS  Google Scholar 

  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure-activity relationship modeling. ACS Nano 4(10):5703–5712. doi:10.1021/nn1013484

    Article  CAS  Google Scholar 

  • Groeneveld RE, Willems DJM, Broekstra J, Van den Broek WHAM, Top JL (2009) ERDSS: Emerging risk detection support system—2008 Project report. Agrotechnology and Food Sciences Group, Wageningen

    Google Scholar 

  • Gruber TR (1993) A Translation Approach to Portable Ontology Specifications. http://www-ksl.stanford.edu/KSL_Abstracts/KSL-92-71.html

  • Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categories and Hazard Identification scheme of nanomaterials. Nanotoxicology 3:243–250

    Article  Google Scholar 

  • Hastings J, Chepelev L, Willighagen E, Adams N, Steinbeck C, Dumontier M (2011) The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web. PLoS one 6(10):e25513

    Article  CAS  Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857. doi:10.1021/nn300223w

    Article  CAS  Google Scholar 

  • Liu R, Rallo R, George S, Ji Z, Nair S, Nel AE, Cohen Y (2011) Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 7(8):1118–1126. doi:10.1002/smll.201002366

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Article  CAS  Google Scholar 

  • Marvin HJP, Kleter GA, Frewer LJ, Cope S, Wentholt MTA, Rowe G (2009) A working procedure for identifying emerging food safety issues at an early stage: Implications for European and international risk management practices. Food Control 20:345–356

    Article  Google Scholar 

  • Morgan K (2005) Development of a preliminary framework for informing the risk analysis and risk management of Nanoparticles. Risk Anal 25:1621–1635

    Article  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. doi: 10.1021/ar300022h

  • Paik SY, Zalk DM, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52(6):419–428. doi:10.1093/annhyg/men041

    Article  CAS  Google Scholar 

  • Peters R, Kramer E, Oomen AG, Herrera Rivera ZE, Oegema G, Tromp PC, Fokkink R, Rietveld A, Marvin HJP, Weigel S, Peijnenburg AA, Bouwmeester H (2012) Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6(3):2441–2451. doi:10.1021/nn204728k

    Article  CAS  Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6(3):175–178. doi:10.1038/nnano.2011.10

    Article  CAS  Google Scholar 

  • Sayes C, Ivanov I (2011) Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 30(11):1723–1734

    Article  Google Scholar 

  • SCENIHR (2007) Scientific Committee on Emerging and Newly Identified Health Risk SCENIHR. Opinion on: The appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials European Commission Health and Consumer Protection Directorate-General. Directorate C - Public Health and Risk Assessment C7- Risk Assessment

  • Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11(4):757–766. doi:10.1007/s11051-008-9546-1

    Article  CAS  Google Scholar 

  • Van Duuren-Stuurman B, Vink SR, Verbist KJ, Heussen HG, Brouwer DH, Kroese DE, Van Niftrik MF, Tielemans E, Fransman W (2012) Stoffenmanager Nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg 56(5):525–541. doi:10.1093/annhyg/mer113

    Google Scholar 

  • Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera Z, Rietjens I, Hendriksen PJ, Bouwmeester H (2012) Behavior of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology. doi: 10.3109/17435390.2012.726382

  • Xia X-R, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems 5(9):671–675

    CAS  Google Scholar 

  • Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, Fadeel B, Riviere JE (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5(11):9074–9081. doi:10.1021/nn203303c

    Article  CAS  Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Madler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. doi:10.1021/nn3010087

    Article  CAS  Google Scholar 

  • Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, Tran L, Marcomin A (2011) Weight of evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology 5(3):445–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted in the framework of NanoNextNL (www.nanonextnl.nl) which is funded by the Dutch government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. P. Marvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marvin, H.J.P., Bouwmeester, H., Bakker, M. et al. Exploring the development of a decision support system (DSS) to prioritize engineered nanoparticles for risk assessment. J Nanopart Res 15, 1839 (2013). https://doi.org/10.1007/s11051-013-1839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1839-3

Keywords

Navigation