Skip to main content
Log in

Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ZVI:

Zero-valent iron

NZVI:

Nanoscale zero-valent iron

MZVI:

Microscale zero-valent iron

GG:

Guar gum

XG:

Xanthan gum

SBS:

Single biopolymer solution

BMS:

Biopolymer mixture solution

WLF:

Williams-Landel-Ferry theory

G’:

Storage modulus (Pa)

G”:

Loss modulus (Pa)

\( \tau \) :

Downward stress of particle (Pa)

d :

Average diameter of the particles (m)

\( \rho_{p} \) :

Density of the particles (kg/m3)

\( \rho_{f} \) :

Density of the fluid (kg/m3)

g:

Acceleration of gravity (m/s2)

\( \chi_{0} \) :

Initial mass magnetic susceptibility (m3/kg)

\( \chi \) :

Mass magnetic susceptibility (m3/kg)

References

  • Amundarain J, Castro L, Rojas M, Siquier S, Ramírez N, Müller A, Sáez A (2009) Solutions of xanthan gum/guar gum mixtures: shear rheology, porous media flow, and solids transport in annular flow. Rheol Acta 48(5):491–498

    Article  CAS  Google Scholar 

  • Born K, Langendorff V, Boulenguer P (2005) Xanthan. In: Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42(2):201–212

    Article  CAS  Google Scholar 

  • Casas JA, Mohedano AF, García-Ochoa F (2000) Viscosity of guar gum and xanthan/guar gum mixture solutions. J Sci Food Agric 80(12):1722–1727

    Article  CAS  Google Scholar 

  • Choppe E, Puaud F, Nicolai T, Benyahia L (2010) Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydr Polym 82(4):1228–1235

    Article  CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

    Article  CAS  Google Scholar 

  • Comba S, Dalmazzo D, Santagata E, Sethi R (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2–3):598–605

    Article  CAS  Google Scholar 

  • Dalla Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009a) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9(5):3210–3218

    Article  CAS  Google Scholar 

  • Dalla Vecchia E, Luna M, Sethi R (2009b) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947

    Article  CAS  Google Scholar 

  • Dea ICM (1989) Industrial polysaccharides. Pure Appl Chem 61(7):1315–1322

    Article  CAS  Google Scholar 

  • Dea ICM, Morris ER (1977) Synergistic xanthan gels. In: Extracellular microbial polysaccharides, ACS symposium series, vol 45. American chemical society, Washington, DC, pp 174–182

  • Dea ICM, Morris ER, Rees DA, Welsh EJ, Barnes HA, Price J (1977) Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res 57:249–272

    Article  CAS  Google Scholar 

  • Di Molfetta A, Sethi R (2006) Clamshell excavation of a permeable reactive barrier. Environ Geol 50(3):361–369

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Freyria FS, Bonelli B, Sethi R, Armandi M, Belluso E, Garrone E (2011) Reactions of acid orange 7 with iron nanoparticles in aqueous solutions. J Phys Chem C 115(49):24143–24152

    Article  CAS  Google Scholar 

  • García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107(1–3):51–65

    Article  CAS  Google Scholar 

  • Iijima M, Shinozaki M, Hatakeyama T, Takahashi M, Hatakeyama H (2007) AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr Polym 68(4):701–707

    Article  CAS  Google Scholar 

  • Kim D, Quinlan M, Yen TF (2009) Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Manag (Oxford) 29(1):321–328

    Article  CAS  Google Scholar 

  • Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, Hannover

    Google Scholar 

  • Milas M, Rinaudo M (1986) Properties of xanthan gum in aqueous solutions: role of the conformational transition. Carbohydr Res 158:191–204

    Article  CAS  Google Scholar 

  • Norton IT, Goodall DM, Frangou SA, Morris ER, Rees DA (1984) Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J Mol Biol 175(3):371–394

    Article  CAS  Google Scholar 

  • Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 223(3):1363–1382

    Article  CAS  Google Scholar 

  • Oostrom M, Wietsma TW, Covert MA, Vermeul VR (2007) Zero-valent iron emplacement in permeable porous media using polymer additions. Ground Water Monit Remediat 27(1):122–130

    Article  CAS  Google Scholar 

  • Pai VB, Khan SA (2002) Gelation and rheology of xanthan/enzyme-modified guar blends. Carbohydr Polym 49(2):207–216

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814

    Article  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8(3):489–496

    Article  CAS  Google Scholar 

  • Risica D, Barbetta A, Vischetti L, Cametti C, Dentini M (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982

    Article  CAS  Google Scholar 

  • Rodd AB, Dunstan DE, Boger DV (2000) Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 42(2):159–174

    Article  CAS  Google Scholar 

  • Schramm G, Haake G (1994) A practical approach to rheology and rheometry. Gebrueder Haake, Karlsruhe

    Google Scholar 

  • Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645

    Google Scholar 

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 324(1–2):71–79

    Article  CAS  Google Scholar 

  • Tosco T, Marchisio DL, Lince F, Sethi R (2012) Extension of the Darcy–Forchheimer law for shear-thinning fluids and validation via pore-scale flow simulations. Transp Porous Media 1–20

  • Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit Remediat 31(1):50–58

    Article  CAS  Google Scholar 

  • Uhlherr PHT, Guo J, Tiu C, Zhang XM, Zhou JZQ, Fang TN (2005) The shear-induced solid–liquid transition in yield stress materials with chemically different structures. J Nonnewton Fluid Mech 125(2–3):101–119

    Article  CAS  Google Scholar 

  • Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J (2000) Linear rheology of guar gum solutions. Macromolecules 33(26):9594–9605

    Article  CAS  Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  CAS  Google Scholar 

  • Xiu Z, Jin Z, Li T, Mahendra S, Lowry GV, Alvarez PJJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

    Article  CAS  Google Scholar 

  • Zhong L, Szecsody J, Oostrom M, Truex M, Shen X, Li X (2011) Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J Hazard Mater 191(1–3):249–257

    Article  CAS  Google Scholar 

  • Zolla V, Freyria FS, Sethi R, Di Molfetta A (2009) Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. J Environ Qual 38(3):897–908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partially funded by the EU AQUAREHAB research project (FP7, Grant Agreement n. 226565) and by MIUR in the framework of PRIN 2008. The authors acknowledge Dr. M.Coïsson at INRiM for STEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajandrea Sethi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, D., Sethi, R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 14, 1239 (2012). https://doi.org/10.1007/s11051-012-1239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1239-0

Keywords

Navigation