Skip to main content
Log in

Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals

  • Comm. on novel techn. and applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Scheelite CaWO4 doped with rare earth ions (Eu3+, Sm3+, Dy3+) were fabricated via a facile solvothermal process without further heat treatment, which used sodium oleate and oleylamine as capping reagent. The structure, morphology, and optical properties of the samples were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscope (HRTEM), X-ray photoelectron spectra (XPS), photoluminescence (PL) spectra and cathodoluminescence (CL). The XRD results reveal that all the doped samples are well assigned to the scheelite structure of the CaWO4 phase. Upon excitation by ultraviolet radiation, the CaWO4:Eu3+ phosphors show the characteristic 5D07F1–3 emission lines of Eu3+, and the CaWO4:Sm3+ phosphors demonstrate the characteristic 4G5/26H5/2–9/2 emission line of Sm3+, and the CaWO4:Dy3+ phosphors demonstrate the characteristic 4F9/26H13/2–15/2 emission line of Dy3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Burcham LJ, Wachs IE (1998) Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3. Spectrochim Acta A 54:1355–1368. doi:10.1016/S1386-1425(98)00036-5

    Article  Google Scholar 

  • Chen D, Shen GZ, Tang KB, Zheng HG, Qian YT (2003) Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol. Mater Res Bull 38:1783–1789. doi:10.1016/j.materresbull.2003.09.004

    Article  CAS  Google Scholar 

  • Feldman C (1960) Range of 1–10 keV electrons in solids. Phys Rev 117:455

    Article  CAS  ADS  Google Scholar 

  • Hsu C, Powell RC (1975) Energy-transfer in europium doped yttrium vanadate crystals. J Lumin 10:273–293

    Article  CAS  Google Scholar 

  • Jia G, Song Y, Yang M, Huang Y, Zhang L, You H (2009) Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties. Opt Mater 31:1032–1037. doi:10.1016/j.optmat.2008.11.012

    Article  CAS  ADS  Google Scholar 

  • Jun Y-w, Jung Y-y, Cheon J (2002) Architectural control of magnetic semiconductor nanocrystals. J Am Chem Soc 124:615–619. doi:10.1021/ja016887w

    Article  CAS  PubMed  Google Scholar 

  • Kay MI, Fraizer BC, Almodovar I (1964) Neutron diffraction refinement of CaWO4. J Chem Phys 40:504–506

    Google Scholar 

  • Li G, Boerio-Goates J, Woodfield BF, Li L (2004) Evidence of linear lattice expansion and covalency enhancement in rutile TiO nanocrystals. Appl Phys Lett 85:2059–2061

    Article  CAS  ADS  Google Scholar 

  • Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of pbse quantum wires, multipods, quantum rods, and cubes. Nano Lett 3:857–862. doi:10.1021/nl0342085

    Article  CAS  ADS  Google Scholar 

  • Lin C, Kong D, Liu X, Wang H, Yu M, Lin J (2007) Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization. Inorg Chem 46:2674–2681. doi:10.1021/ic062318j

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Huang JY, Ostroumov R, Wang KL, Chang JP (2008) Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes. J Phys Chem C 112:2278–2285. doi:10.1021/jp0773738

    Article  CAS  Google Scholar 

  • Mikhailik VB, Bailiff IK, Kraus H, Rodnyi PA, Ninkovic J (2003) Two-photon excitation and luminescence of a CaWO4 scintillator. Radiat Meas 38:585–588

    Article  Google Scholar 

  • Nagirnyi V, Feldbach E, Jonsson L, Kirm M, Lushchik A, Lushchik C, Nagornaya LL, Ryzhikov VD, Savikhin F, Svensson G, Tupitsina IA (1997) Excitonic and recombination processes in CaWO4 and CdWO4 scintillators under synchrotron irradiation. Radiat Meas 29:247–250

    Article  Google Scholar 

  • Nazarov MV, Jeon DY, Kang JH, Popovici E, Muresan LE, Zamoryanskaya MV, Tsukerblat BS (2004) Luminescence properties of europium-terbium double activated calcium tungstate phosphor. Solid State Commun 131:307–311. doi:10.1016/j.ssc.2004.05.025

    Article  CAS  ADS  Google Scholar 

  • Petricca F, Angloher G, Cozzini C, Frank T, Hauff D, Ninkovic J, Pröbst F, Seidel W, Uchaikin S (2004) Light detector development for CRESST II. Nucl Instrum Method A 520:193–196. doi:10.1016/j.nima.2003.11.291

    Article  CAS  ADS  Google Scholar 

  • Senyshyn A, Kraus H, Mikhailik VB, Yakovyna V (2004) Lattice dynamics and thermal properties of CaWO4. Phys Rev B 70:9. doi:10.1103/PhysRevB.70.214306

    Article  Google Scholar 

  • Shi DL, Lian J, Wang W, Liu GK, He P, Dong ZY, Wang LM, Ewing RC (2006) Luminescent carbon nanotubes by surface functionalization. Adv Mater 18:189. doi:10.1002/adma.200501680

    Article  CAS  Google Scholar 

  • Shi S, Gao J, Zhou J (2008) Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor. Opt Mater 30:1616–1620. doi:10.1016/j.optmat.2007.10.007

    Article  CAS  ADS  Google Scholar 

  • Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393. doi:10.1021/cg0497905

    Article  CAS  Google Scholar 

  • Su Y, Li G, Xue Y, Li L (2007) Tunable physical properties of CaWO4 nanocrystals via particle size control. J Phys Chem C 111:6684–6689. doi:10.1021/jp068480p

    Article  CAS  Google Scholar 

  • Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067. doi:10.1021/cm8014435

    Article  CAS  Google Scholar 

  • Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263. doi:10.1021/jp003177o

    Article  CAS  Google Scholar 

  • Treadaway MJ, Powell RC (1975) Energy-transfer in samarium-doped calcium tungstate crystals. Phys Rev B 11:862–874

    Article  CAS  ADS  Google Scholar 

  • Van Vliet JPM, Blasse G, Brixner LH (1988) Luminescence properties of alkali europium double tungstates and molybdates AEuM2O8. J Solid State Chem 76:160–166. doi:10.1016/0022-4596(88)90203-4

    Article  ADS  Google Scholar 

  • Wang H, Lin CK, Liu XM, Lin J, Yu M (2005) Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays. Appl Phys Lett 87. doi: 10.1063/1.2123382

  • Wang ZL, Quan ZW, Lin J, Fang JY (2005b) Polyol-mediated synthesis and photoluminescent properties of Ce3+ and/or Tb3+-doped LaPO4 nanoparticles. J Nanosci Nanotech 5:1532–1536. doi:10.1166/jnn.2005.319

    Article  CAS  Google Scholar 

  • Wuister SF, Swart I, van Driel F, Hickey SG, de Mello Donega C (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3:503–507. doi:10.1021/nl034054t

    Article  CAS  ADS  Google Scholar 

  • Wuister SF, de Mello Donega C, Meijerink A (2004) Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. J Am Chem Soc 126:10397–10402. doi:10.1021/ja048222a

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ge J-P, Li Y-D (2006) Solvothermal synthesis of monodisperse PbSe nanocrystals. J Phys Chem B 110:2497–2501. doi:10.1021/jp056521w

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Quan Z, Li C, Lian H, Huang S, Lin J (2008a) Fabrication, characterization of spherical CaWO4:Ln @MCM-41(Ln = Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems. Microporous Mesoporous Mater 116:524–531. doi:10.1016/j.micromeso.2008.05.016

    Article  CAS  Google Scholar 

  • Yang P, Quan Z, Lu L, Huang S, Lin J (2008b) Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials 29:692–702. doi:0.1016/j.biomaterials.2007.10.019

    Article  CAS  PubMed  Google Scholar 

  • Yi GR, Moon JH, Manoharan VN, Pine DJ, Yang SM (2002) Packings of uniform microspheres with ordered macropores fabricated by double templating. J Am Chem Soc 124:13354–13355

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem Mater 14:2224–2231. doi:10.1021/cm011663y

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y (2004) Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J Phys Chem B 108:17805–17811. doi:10.1021/jp047446c

    Article  CAS  Google Scholar 

  • Zhang Y, Peng Q, Wang X, Li Y (2004) Synthesis and characterization of monodisperse ZnS nanospheres. Chem Lett 33:1320–1321

    Article  CAS  Google Scholar 

  • Zhang Q, Yao W-T, Chen X, Yu S-H (2007) Nearly monodisperse tungstate MWO4 microspheres (M) Pb, Ca): surfactant-assisted solution synthesis and optical properties. Cryst Growth Des 7:1423–1431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by National Basic Research Program of China (2007CB935502), the National Natural Science Foundation of China (NSFC 20871035, 50702057, 50872131, 00610227), China Postdoctoral Special Science Foundation (200808281), and Harbin Sci-Tech Innovation Foundation (No. 2009RFQXG045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piaoping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yang, P., Gai, S. et al. Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals. J Nanopart Res 12, 2295–2305 (2010). https://doi.org/10.1007/s11051-010-9850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9850-4

Keywords

Navigation