Skip to main content
Log in

Magnetite hollow spheres: solution synthesis, phase formation and magnetic property

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polycrystalline magnetite hollow spheres with diameter of about 200 nm and shell thickness of 30–60 nm were prepared via a facile solution route. For the reaction, ethylene glycol (EG) served as the reducing agent and soldium acetate played the role of precipitator. In addition, polyvinylpyrrolidone (PVP) served as a surface stabilizer. The morphologies and structures were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The intermediate products at different stages were also studied to shed light on the evolution of phase formation. It revealed that the hollow structure formed via self-assembly of nanocrystallites (about 15 nm) using sodium acetate as mild precipitator. Evidences further pointed out that the Ostwald ripening process well explained the growth mechanism of the hollow structure. Magnetization measurements showed that the coercivity of magnetite hollow spheres at low temperature is about 200 Oe and the saturation magnetization is about 83 emu g−1, roughly 85% that of the bulk phase, close to the value of its solid counterpart. In addition, a freezing transition was observed at 25 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aldea N, Turcu R, Nan A, Craciunescu I, Pana O, Yaning X, Wu Z, Bica D, Vekas L, Matei F (2009) Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation. J Nanopart Res 11(6):1429–1439

    Article  CAS  Google Scholar 

  • Butter K, Philipse AP, Vroege GJ (2002) Synthesis and properties of iron ferrofluids. J Magn Magn Mater 252:1–3

    Article  CAS  Google Scholar 

  • Cong YH, Wang GL, Xiong MH, Huang Y, Hong ZF, Wang DL, Li JJ, Li LB (2008) A facile interfacial reaction route to prepare magnetic hollow spheres with tunable shell thickness. Langmuir 24(13):6624–6629

    Article  CAS  Google Scholar 

  • Dadarlat D, Neamtu C, Streza M, Turcu R, Craciunescu I, Bica D, Vekas L (2008) High accuracy photopyroelectric investigation of dynamic thermal parameters of Fe3O4 and CoFe2O4 magnetic nanofluids. J Nanopart Res 10(8):1329–1336

    Article  CAS  Google Scholar 

  • Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29

    Article  CAS  Google Scholar 

  • Doyle PS, Bibette J, Bancaud A, Viovy JL (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295(5563):2237

    Article  CAS  Google Scholar 

  • Franger S, Berthet P, Dragos O, Baddour-Hadjean R, Bonville P, Berthon J (2007) Large influence of the synthesis conditions on the physico-chemical properties of nanostructured Fe3O4. J Nanopart Res 9(3):389–402

    Article  CAS  Google Scholar 

  • Ge JP, Hu YP, Zhang TR, Huynh T, Yin YD (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24(7):3671–3680

    Article  CAS  Google Scholar 

  • Guo L, Liang F, Wen XG, Yang SH, He L, Zheng WZ, Chen CP, Zhong QP (2007) Uniform magnetic chains of hollow cobalt mesospheres from one-pot synthesis and their assembly in solution. Adv Funct Mater 17(3):425–430

    Article  CAS  Google Scholar 

  • Hong RY, Pan TT, Li HZ (2006) Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J Magn Magn Mater 303:60–68

    Article  CAS  Google Scholar 

  • Huang J, Chen WM, Zhao W, Li YQ, Li XG, Chen CP (2009) One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging iron nanoparticles in aqueous solution. J Phys Chem C 113(28):12067–12071

    Article  CAS  Google Scholar 

  • Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154

    Article  Google Scholar 

  • Jia BP, Gao L (2008) Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. J Phys Chem C 112(3):666–671

    Article  CAS  Google Scholar 

  • Karmakar S, Chakravorty A (1996) Carboxyl-bonded low-spin iron(III) chemistry of a family of coordination type cis-FeN4O2. Inorg Chem 35(7):1935–1939

    Article  CAS  Google Scholar 

  • Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129(20):6352–6353

    Article  CAS  Google Scholar 

  • Li XH, Zhang DH, Chen JS (2006) Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J Am Chem Soc 128(26):8382–8383

    Article  CAS  Google Scholar 

  • Ling F, Lei J, Mai ZH, Zhu DB (2004) Polymer-controlled synthesis of Fe3O4 single-crystal nanorods. J Colloid Interf Sci 278(2):372–375

    Article  Google Scholar 

  • Liu SH, Xing RM, Lu F, Rana RK, Zhu JJ (2009) One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J Phys Chem C 113(50):21042–21047

    Article  CAS  Google Scholar 

  • Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329

    Article  CAS  Google Scholar 

  • Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38(17):3699–3704

    Article  CAS  Google Scholar 

  • Ostwald W (1900) On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z Phys Chem-Stoch Ve 34(4):495–503

    Google Scholar 

  • Ottaviano L, Kwoka M, Bisti F, Parisse P, Grossi V, Santucci S, Szuber J (2009) Local surface morphology and chemistry of SnO2 thin films deposited by rheotaxial growth and thermal oxidation method for gas sensor application. Thin Solid Films 517(22):6161–6169

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  • Raj K, Moskowit B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180

    Article  CAS  Google Scholar 

  • Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  • Teo JJ, Chang Y, Zeng HC (2006) Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22(17):7369–7377

    Article  CAS  Google Scholar 

  • Wang H, Zhu T, Zhao K, Wang WN, Wang CS, Wang YJ, Zhan WS (2004) Surface spin glass and exchange bias in Fe3O4 nanoparticles compacted under high pressure. Phys Rev B 70(9):092409

    Article  Google Scholar 

  • Wang RM, Chen YF, Fu YY, Zhang H, Kisielowski C (2005) Bicrystalline hematite nanowires. J Phys Chem B 109(25):12245–12249

    Article  CAS  Google Scholar 

  • Wang N, Guo L, He L, Cao X, Chen CP, Wang RM, Yang SH (2007) Facile synthesis of monodisperse Mn3O4 tetragonal nanoparticles and their large-scale assembly into highly regular walls by a simple solution route. Small 3(4):606–610

    Article  CAS  Google Scholar 

  • Wang DB, Song CX, Zhao YH, Yang ML (2008a) Synthesis and characterization of monodisperse iron oxides microspheres. J Phys Chem C 112(33):12710–12715

    Article  CAS  Google Scholar 

  • Wang N, Cao X, Kong DS, Chen WM, Guo L, Chen CP (2008b) Nickel chains assembled by hollow microspheres and their magnetic properties. J Phys Chem C 112(17):6613–6619

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398

    Article  CAS  Google Scholar 

  • Zhang LY, Zhang YF (2009) Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. J Magn Magn Mater 321(5):L15–L20

    Article  CAS  Google Scholar 

  • Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18(24):3941–3946

    Article  CAS  Google Scholar 

  • Zhang GX, Liu YB, Zhang CF, Hu WQ, Xu WB, Li Z, Liang S, Cao JQ, Wang YX (2009) Aqueous immune magnetite nanoparticles for immunoassay. J Nanopart Res 11(2):441–448

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18(18):2426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 50671003, 50971011 and 10874006), Beijing Natural Science Foundation (No. 1102025), the National Basic Research Program of China (Nos. 2009CB939901 and 2010CB934601), the Program for New Century Excellent Talents in University (NCET-06-0175) and Research Fund for the Doctoral Program of Higher Education of China (20091102110038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongming Wang or Chinping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Ren, Z., Wang, R. et al. Magnetite hollow spheres: solution synthesis, phase formation and magnetic property. J Nanopart Res 13, 213–220 (2011). https://doi.org/10.1007/s11051-010-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0020-5

Keywords

Navigation