Skip to main content
Log in

The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to increase the longevity of contaminant retention, a method is sought to improve the corrosion resistance of iron nanoparticles (INP) used for remediation of contaminated water and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10−8 mbar) at 500 °C on the bulk and surface chemistry of INP. The particle size did not change significantly as a result of annealing but the surface oxide thickness decreased from an average of 3–4 nm to 2 nm. BET analysis recorded a decrease in INP surface area from 19.0 to 4.8 m2 g−1, consistent with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of poorly crystalline iron to bcc α-Fe and Fe2B phases. X-ray photoelectron spectroscopy (XPS) indicated a change in the surface oxide stoichiometry from magnetite (Fe3O4) towards wüstite (FeO) and the migration of boron and carbon to the particle surfaces. The improved core crystallinity and the presence of passivating impurity phases at the INP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INP for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen GC, Curtis MT, Hooper AJ, Tucker MJ (1974) X-ray photoelectron-spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530

    Article  Google Scholar 

  • Alowitz MJ, Scherer M (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306

    Article  CAS  PubMed  Google Scholar 

  • Bigg T, Judd SJ (2000) Zero-valent iron for water treatment. Environ Technol 21:661–670

    Article  CAS  Google Scholar 

  • Bonin PML, Jedral W, Odziemkowski MS, Gillham RW (2000) Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corros Sci 42:1921–1939

    Article  CAS  Google Scholar 

  • Burke AR, Brown CR, Bowling WC et al (1988) Ignition mechanism of the titanium boron pyrotechnic mixture. Surf Interface Anal 11:353–358

    Article  CAS  Google Scholar 

  • Callister WD (2003) Materials science and engineering: an introduction. Wiley International Press, NJ

    Google Scholar 

  • Cao JS, Elliott D, Zhang WJJ (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  CAS  Google Scholar 

  • Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144:334–339

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  PubMed  Google Scholar 

  • Choi Ch, Dong X, Kim B (2001) Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Mater Trans 42:2046–2049

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • Dehlinger AS, Pierson JF, Roman A, Ph Bauer (2003) Properties of iron boride films prepared by magnetron sputtering. Surf Coat Technol 174–175:331–337

    Article  Google Scholar 

  • Elihn K, Otten F, Boman M et al (1999) Nanoparticle formation by laser-assisted photolysis of ferrocene. Nanostruct Mater 12:79–82

    Article  Google Scholar 

  • Elliott DW, Zhang W (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  PubMed  Google Scholar 

  • Glazier R, Venkatakrishnan R, Gheorghiu F et al (2003) Nanotechnology takes root. Civil Eng 73:64–69

    Google Scholar 

  • Grovesnor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  Google Scholar 

  • Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Karlsson A, Deppert K, Wacaser A et al (2005) Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A A80:1579–1583

    Article  ADS  Google Scholar 

  • Koifman IS, Egorshina TV, Laskova GV (1969) X-ray diffraction analysis of borocementite. Metalloved Term Obrab Metall 2:59–60

    Google Scholar 

  • Krämer A, Leutenecker R, Aubertin F, Gonser U (1994) Amorphization of armco iron by boron implantation and subsequent crystallization by heat-treatment—a GEMS, X-ray and ultramicrohardness study. Hyperfine Interact 94:2367–2372

    Article  ADS  Google Scholar 

  • Kuhn LT, Bojesen A, Timmermann L et al (2002) Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condens Matter 14:13551–13567

    Article  CAS  ADS  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946

    CAS  Google Scholar 

  • Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191:97–105

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Lucci A, Venturello G (1971) Comments on the condition of boron in α-iron. Scripta Metall 5:17–24

    Article  CAS  Google Scholar 

  • McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  • Merlin J, Merle P, Garnier S et al (2004) Experimental determination of the carbon solubility limit in ferritic steels. Metal Mater Trans A 35A:1655–1661

    Article  CAS  Google Scholar 

  • Miehr R, Tratnyek PG, Bandstra JZ et al (2004) Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environ Sci Technol 38:139–147

    Article  CAS  PubMed  Google Scholar 

  • Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934

    Article  CAS  Google Scholar 

  • Moura FCC, Oliveira GC, Araujo MH et al (2005) Formation of highly reactive species at the interface Fe degrees-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes. Chem Lett 34:1172–1173

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Bucher J et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

    Article  CAS  Google Scholar 

  • Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057

    Article  CAS  ADS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Scott TB (2005) Sorption of uranium onto iron bearing minerals. PhD Thesis, University of Bristol

  • Scott TB, Allen GC, Heard PJ, Randall MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646

    Article  CAS  ADS  Google Scholar 

  • Shimotori T, Nuxoll EE, Cussler EL, Arnold WA (2004) A polymer membrane containing Fe0 as a contaminant barrier. Environ Sci Technol 38:2264–2270

    Article  CAS  PubMed  Google Scholar 

  • Signorini L, Pasquini L, Savini L et al (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys Rev B 68:195423

    Article  ADS  Google Scholar 

  • Sun YP, Li XQ, Cao J et al (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  PubMed  Google Scholar 

  • Valet P, Carel C (1989) The Fe-O (iron-oxygen) phase diagram in the range of the nonstoichiometric monoxide and magnetite at the Fe-rich limit: reduction diagrams. J Phase Equilib 10(3):209–218

    Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wriedt HA (1991) The Fe-O (iron-oxygen) system. J Phase Equilib 12:170–200

    Article  CAS  Google Scholar 

  • Zaera F (1989) A thermal desorption and X-ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. J Vac Sci Technol A 7:640–645

    Article  CAS  ADS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. Nanopart Res 4:323–332

    Article  Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Roger Vincent, Department of Physics, University of Bristol, for performing the TEM analysis and Prof. Peter Flewitt for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Dickinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, T.B., Dickinson, M., Crane, R.A. et al. The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 12, 1765–1775 (2010). https://doi.org/10.1007/s11051-009-9732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9732-9

Keywords

Navigation