Skip to main content
Log in

Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Films made of nanofibrillated cellulose (NFC) are most interesting for use in packaging applications. However, in order to understand the film-forming capabilities of NFC and their properties, new advanced methods for characterizing the different scales of the structures are necessary. In this study, we perform a comprehensive characterisation of NFC-films, based on desktop scanner analysis, scanning electron microscopy in backscatter electron imaging mode (SEM-BEI), laser profilometry (LP) and field-emission scanning electron microscopy in secondary electron imaging mode (FE-SEM-SEI). Objective quantification is performed for assessing the (i) film thicknesses, (ii) fibril diameters and (iii) fibril orientations, based on computer-assisted electron microscopy. The most frequent fibril diameter is 20–30 nm in diameter. A method for acquiring FE-SEM images of NFC surfaces without a conductive metallic layer is introduced. Having appropriate characterisation tools, the structural and mechanical properties of the films upon moisture were quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  PubMed  Google Scholar 

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics int 11(7):36–42

    Google Scholar 

  • Ahola S, Salmi J, Johansson L-S, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils, preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrilated cellulose. Cellulose 13:665–667

    Article  CAS  Google Scholar 

  • Antoine C (2007) Wire marking and its effect upon print-through perception of newsprints. Appita J 60(3):196–203

    MathSciNet  Google Scholar 

  • Bockus S (2006) A study of the microstructure and mechanical properties of continuously cast iron products. Metalurgija 45(4):287–290

    CAS  Google Scholar 

  • Chinga G, Solheim O, Mörseburg K (2007a) Cross-sectional dimensions of fiber and pore networks based on Euclidean distance maps. Nordic Pulp Paper Res J 22(4):500–507

    Article  CAS  Google Scholar 

  • Chinga G, Johnsen PO, Dougherty R, Lunden-Berli E, Walter J (2007b) Quantification of the 3D microstructure of SC surfaces. J Microscopy 227(3):254–265

    Article  MathSciNet  Google Scholar 

  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as a strength enhancer in TMP paper. Nord Pulp Paper Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Woods RE (1993) Digital image processing. Addison–Wesley, USA

    Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  PubMed  Google Scholar 

  • I’Anson S (1995) Identification of periodic marks in paper and board by image analysis using two-dimensional fast Fourier transforms. Tappi J 78(3):113–119

    Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  PubMed  Google Scholar 

  • Meredith R (1956) The mechanical properties of textile fibres. North-Holland, Amsterdam

    Google Scholar 

  • Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose. doi:10.1007/s10570-009-9290-4

  • Pääkkö M, Ankefors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  PubMed  Google Scholar 

  • Rasband WS (1997) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankefors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Per Olav Johnsen (PFI) for skilful study in the image acquisition of some of the FE-SEM images. Professor Jarle Hjelen (Department of Materials Science and Engineering, NTNU) is thanked for facilitating the FE-SEM facilities applied in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Chinga-Carrasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinga-Carrasco, G., Syverud, K. Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12, 841–851 (2010). https://doi.org/10.1007/s11051-009-9710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9710-2

Keywords

Navigation