Skip to main content
Log in

ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A direct and simple inductively coupled plasma mass spectroscopy (ICP-MS) method for the determination of gold nanoparticles (AuNP) with different particle sizes ranging from 5 to 20 nm and suspended in aqueous solutions is described. The results show no significant difference compared to the determination of the same AuNPs after digestion, as claimed by the literature. The obtained limit of quantification of the method is 0.15 μg/L Au(III) that corresponds to 4.40 × 109 AuNP/L, considering spherical AuNPs 15 nm sized. Spike recovery experiments have shown that the sample matrix is a significant factor influencing the accuracy of the measurement. Spike recoveries from 93% to 95% are found for AuNP samples prepared in trisodium citrate, while for deionized H2O a spike recovery of around 80% was obtained. The sample preparation mode along with the ICP-MS parameters have been optimized and found to be crucial so as to achieve the required accuracy for the direct quantification of AuNP suspensions. The effect of the nanoparticle size upon the ICP-MS signal also was studied, and only significant differences due to the chemical environment and not to the AuNPs size were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alivisatos AP, Peng X, Wilson TE, Loweth CL, Bruchez MP, Schultz PG (1996) Organization of nanocrystal molecules using DNA. Nature 382:609–611. doi:10.1038/382609a0

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240. doi:10.1021/ac070357m

    Article  CAS  PubMed  Google Scholar 

  • Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron 22:1961–1967. doi:10.1016/j.bios.2006.08.031

    Article  PubMed  Google Scholar 

  • Chen H, Wang Y, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer (Guildf) 47:763–766. doi:10.1016/j.polymer.2005.11.034

    Article  CAS  Google Scholar 

  • Collins JA, Xirouchaki C, Palmer RE, Heath JK, Jones CH (2004) Clusters for biology: immobilization of proteins by size-selected metal clusters. Appl Surf Sci 226:197–208. doi:10.1016/j.apsusc.2003.11.059

    Article  CAS  ADS  Google Scholar 

  • Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL et al (2002) Changes in the electronic properties of a molecule when it is wired into a circuit. J Phys Chem B 106:8609–8614. doi:10.1021/jp0206065

    Article  CAS  Google Scholar 

  • Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandle AB, Rao M et al (2001a) Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679. doi:10.1021/la001164w

    Article  CAS  Google Scholar 

  • Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M (2001b) On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates. Bioconjug Chem 12:684–690. doi:10.1021/bc0001241

    Article  CAS  PubMed  Google Scholar 

  • Gole A, Vyas S, Phadtare S, Lachke A, Sastry M (2002) Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids Surf B Biointerfaces 25:129–138. doi:10.1016/S0927-7765(01)00301-0

    Article  CAS  Google Scholar 

  • González-García MB, Costa-García A (1995) Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode. Bioelectrochem Bioenerg 38:389–395. doi:10.1016/0302-4598(95)01813-T

    Article  Google Scholar 

  • Helfrich A, Brüchert W, Bettmer J (2006) Size characterisation of Au nanoparticles by ICP-MS coupling techniques. J Anal At Spectrom 21:431–434. doi:10.1039/b511705d

    Article  CAS  Google Scholar 

  • Hernandez-Santos D, González-Garcia MB, Costa-Garcia A (2002) Metal-nanoparticles based electroanalysis. Electroanalysis 14:1225–1235. doi:10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Jiang P, Xie S, Pang S, Gao H (2002) The combining analysis of height and phase images in tapping-mode atomic force microscopy: a new route for the characterization of thiol-coated gold nanoparticle film on solid substrate. Appl Surf Sci 191:240–246

    CAS  Google Scholar 

  • Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. Angew Chem 42:191–194. doi:10.1002/anie.200390075

    Article  CAS  Google Scholar 

  • Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44. doi:10.1002/elan.200302930

    Article  CAS  Google Scholar 

  • Keating CD, Kovaleski KM, Natan MJ (1998) Protein:colloid conjugates for surface enhanced raman scattering: stability and control of protein orientation. J Phys Chem B 102:9404–9413. doi:10.1021/jp982723z

    Article  CAS  Google Scholar 

  • Kumar A, Pattarkine M, Bhadbhade M, Mandale AB, Ganesh KN, Datar SS et al (2001) Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv Mater 13:341–344. doi:10.1002/1521-4095(200103)13:5<341::AID-ADMA341>3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136. doi:10.1021/ie060672j

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. doi:10.1021/jp984796o

    Article  CAS  Google Scholar 

  • Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indiana Acad Sci 114:513–520. doi:10.1007/BF02704195

    Article  CAS  Google Scholar 

  • Merkoçi A, Aldavert M, Marin S, Alegret S (2005a) New materials for electrochemical sensing V: nanoparticles for DNA labeling. Trends Analyt Chem 24:341–349. doi:10.1016/j.trac.2005.03.019

    Article  Google Scholar 

  • Merkoçi A, Aldavert M, Tarrasón G, Eritja R, Alegret S (2005b) Toward an ICPMS-linked DNA assay based on gold nanoparticles immunoconnected through peptide sequences. Anal Chem 77:6500–6503. doi:10.1021/ac050539l

    Article  PubMed  Google Scholar 

  • Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675. doi:10.1021/ja982721s

    Article  CAS  Google Scholar 

  • Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem 40:3685–3688. doi:10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Park S, Taton TA, Mirkin CA (2001) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    ADS  Google Scholar 

  • Patolsky F, Gabriel T, Willner I (1999) Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem 479:69–73. doi:10.1016/S0022-0728(99)00426-X

    Article  CAS  Google Scholar 

  • Pumera M, Aldavert M, Mills C, Merkoçi A, Alegret S (2005a) Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim Acta 50:3702–3707. doi:10.1016/j.electacta.2005.01.035

    Article  CAS  Google Scholar 

  • Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005b) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21:9625–9629. doi:10.1021/la051917k

    Article  CAS  PubMed  Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549. doi:10.1021/la026906v

    Article  CAS  Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya S et al (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–106. doi:10.1016/S0021-9797(03)00616-7

    Article  CAS  PubMed  Google Scholar 

  • Turkevich J, Stevenson P, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/df9511100055

    Article  Google Scholar 

  • Wang J, Xu D, Polsky R (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 124:4208–4209. doi:10.1021/ja0255709

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hussain I, Brust M, Cooper AI (2004) Emulsion-templated gold beads using gold nanoparticles as building blocks. Adv Mater 16:27–30. doi:10.1002/adma.200306153

    Article  Google Scholar 

  • Zhao J, O’Daly JP, Henkens RW, Stonehuerner J, Crumblis AL (1996) A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 11:493–502. doi:10.1016/0956-5663(96)86786-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MEC (Madrid) for the projects MAT2008-03079/NAN, CSD2006-00012 “NANOBIOMED” (Consolider-Ingenio 2010) and Juan de la Cierva scholarship (A. de la Escosura) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Merkoçi.

Additional information

A. de la Escosura-Muñiz was on leave from Aragon Institute of Nanoscience, University of Zaragoza, Zaragoza, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allabashi, R., Stach, W., de la Escosura-Muñiz, A. et al. ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. J Nanopart Res 11, 2003–2011 (2009). https://doi.org/10.1007/s11051-008-9561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9561-2

Keywords

Navigation