Skip to main content
Log in

The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal S, Raghuveer M, Li H, Ramanath G (2007) Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl Phys Lett 90:193104–193103

    Article  Google Scholar 

  • Balasubramanian K, Burghard B (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  • Banerjee S, Wong SS (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106:12144–12151

    Article  CAS  Google Scholar 

  • Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater 15:858–864

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  • Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349–2352

    Article  CAS  Google Scholar 

  • Hamon MA, Jian CH, Hu Y, Chen M, Apparao EI, Rao M, Eklund PC, Haddon PC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840

    Article  CAS  Google Scholar 

  • Hamwi A, Alvergnat H, Bonnamy S, Béguin F (1997) Fluorination of carbon nanotubes. Carbon 35:723–728

    Article  CAS  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    Article  CAS  Google Scholar 

  • Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    CAS  Google Scholar 

  • Hiura H, Ebbesen TW, Tanigaki K (1995) Opening and purification of carbon nanotubes in high yields. Adv Mater 7:275–276

    Article  CAS  Google Scholar 

  • Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed 40:4002–4005

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Lefrant S, Baibarac M, Baltog I, Velula T, Mevellec JY, Chauvet O (2005) Electrochemical and vibrational properties of single-walled carbon nanotubes in hydrochloric acid solutions. Diamond Relat Mater 14:873–880

    Article  CAS  Google Scholar 

  • Li C, Wang D, Liang T, Wang X, Wu J, Hu X, Liang J (2004) Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors. Powder Technol 142:175–179

    Article  CAS  Google Scholar 

  • Li W, Bai Y, Zhang Y, Sun M, Cheng R, Xu X, Chen Y, Mo Y (2005) Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met 155:509–515

    Article  CAS  Google Scholar 

  • Lim JK, Yun WS, Yoon M-h, Lee SK, Kim CH, Kim K, Kim SK (2003) Selective thiolation of single-walled carbon nanotubes. Synth Met 139:521–527

    Article  CAS  Google Scholar 

  • Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272

    Article  CAS  Google Scholar 

  • Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  Google Scholar 

  • Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  • Piccozi S, Santucci S, Lozzi L, Cantalini C, Baratto C, Sbervegelieri G, Armentano I, Kenny JM, Valentini L, Delley B (2004) Ozone adsorption on carbon nanotubes: ab initio calculations. J Vac Sci Technol A 22:1466–1470

    Google Scholar 

  • Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B Condens Matter Mater Phys 73:085410

    Google Scholar 

  • Sham M-L, Kim J-K (2006) Surface functionalities of multi-wall carbon nanotubes after UV/ozone and TETA treatments. Carbon 44:768–777

    Article  CAS  Google Scholar 

  • Singjai P, Changsarn S, Thongtem S (2007) Electrical resistivity of bulk multi-walled carbon nanotubes synthesized by an infusion chemical vapor deposition method. Mater Sci Eng A 443:42–46

    Article  Google Scholar 

  • Th M, van Attekum PM, Wertheim GK (1979) Excitonic effects in core-hole screening. Phys Rev Lett 43:1896–1898

    Article  Google Scholar 

  • Wang C, Zhou G, Liu H, Wu J, Qiu Y, Gu BL, Duan W (2006) Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: a density functional theory study. J Phys Chem B 110:10266–10271

    Article  CAS  Google Scholar 

  • Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718

    Article  CAS  Google Scholar 

  • Zhang M, Su L, Mao L (2006) Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44:276–283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, C.H., Cervini, R., Clarke, S.R. et al. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J Nanopart Res 10 (Suppl 1), 77–88 (2008). https://doi.org/10.1007/s11051-008-9376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9376-1

Keywords

Navigation