Skip to main content
Log in

Fascinating morphologies of lead tungstate nanostructures by chimie douce approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lead tungstate occurs in nature as tetragonal stolzite of scheelite (CaWO4) type and monoclinic raspite. In this work, we report, the typical growth of snowflake-like tetragonal stolzite and bamboo-leaf-like monoclinic raspite nanocrystals of PbWO4 via a simple aqueous precipitation method and a polyol (polyethylene glycol-200) mediated precipitation method at room temperature (27 °C). The synthesised PbWO4 nanocrystals were characterised by XRD, SEM, EDAX and TGA–DTA. The UV-Vis absorption and photoluminescence studies of PbWO4 nanocrystals in the two morphologies were performed. The nuclei of PbWO4 nanocrystals in aqueous medium self-assemble in a tetragonal manner to form the snowflake-like crystals. In polyol medium, PbWO4 nuclei preferentially grow by oriented attachment process to form the bamboo-leaf-like morphology. The specific morphology of the regularly assembled PbWO4 nanocrystals in the two phases finds applications in nanoelectronics and photonics. Compared to other well-known scintillators, PbWO4 is most attractive for high-energy physics applications, because of its high density, short decay time and high irradiation damage resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annenkov A, Auffray E, Korzhik M, Lecoq P, Peigneux JP (1998) On the origin of transmission damage in lead tungstate crystals under irradiation. Phys Status Solidi (a) 170:47–62

    Article  CAS  Google Scholar 

  • Blasse G (1997) Classical phosphors; A Pandora’s box. J Lumin 72–74:129–134

    Article  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Chen D, Shen G, Tang K, Liang Z, Zheng H (2004) AOT-microemulsions-based formation and evolution of PbWO4 crystals. J Phys Chem B 108:11280–11284

    Article  CAS  Google Scholar 

  • Chipaux R, Andre G, Cousson A (2001) Crystal structure of lead tungstate at 1.4 and 300 K. J Alloys Comp 325:91–94

    Article  CAS  Google Scholar 

  • Cho WS, Yashima M, Kakihana M, Kudo A, Sakata T, Yoshimura M (1995) Room- temperature preparation of the highly crystallised luminescent CaWO4 film by an electrochemical method. Appl Phys Lett 66:1027–1029

    Article  CAS  Google Scholar 

  • Dias A, Ciminelli VST (2003) Electroceramic materials of tailored phase and morphology by hydrothermal technology. Chem Mater 15:1344–1352

    Article  CAS  Google Scholar 

  • Geng J, Lv Y, Lu D, Zhu J-J (2006) Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures. Nanotechnology 17:2614–2620

    Article  CAS  Google Scholar 

  • George T, Joseph S, Mathew S (2005) Synthesis and characterization of nanophased silver tungstate. Pramana. J Phys 65(5):793–799

    CAS  Google Scholar 

  • Grzechnik A, Crichton WA, Marshall WG, Friese K (2006) High- pressure X-ray and neutron powder diffraction study of PbWO4 and BaWO4 scheelites. J Phys Condens Matter 18:3017–3029

    Article  CAS  Google Scholar 

  • He X, Cao M (2006) Synthesis and characterization of PbCrO4 and PbWO4 nanorods. Nanotechnology 17:3139–3143

    Article  CAS  Google Scholar 

  • Hu XL, Zhu YJ (2004) Morphology control of PbWO4 nano and micro crystals via a simple, seedless, and high-yield wet chemical route. Langmuir 20:1521–1523

    Article  CAS  Google Scholar 

  • Huang Y, Seo HJ, Feng Q, Yuan S (2005) Effects of trivalent rare-earth ions on spectral properties of PbWO4 crystals. Mater Sci Eng B 121:103–107

    Article  Google Scholar 

  • Itoh M, Fujita M (2000) Optical properties of scheelite and raspite PbWO4 crystals. Phys Rev B 62:12825–12830

    Article  CAS  Google Scholar 

  • Klassen NV, Kobelev NP, Strukova GK (2005) Light yield improvement in lead tungstate. Nucl Instrum Methods Phys Res A 537:177–181

    Article  CAS  Google Scholar 

  • Mao R, Chen J, Shen D, Yin Z (2004) Growth and uniformity improvement of PbWO4 crystal with yttrium doping. J Cryst Growth 265:518–524

    Article  CAS  Google Scholar 

  • Nikl M (2000) Wide band gap scintillation materials: progress in the technology and material understanding. Phys Status Solidi (a) 178:595–620

    Article  CAS  Google Scholar 

  • Pankratov V, Grigorjeva L, Millers D, Chernov S, Voloshinovskii AS (2001) Luminescence center excited state absorption in tungstates. J Lumin 94–95:427–432

    Article  Google Scholar 

  • Rautaray D, Sainkar SR, Sastry M (2003) Ca2+ – Keggin anion colloidal particles as templates for the growth of star-shaped calcite crystal assemblies. Langmuir 19:10095–10099

    Article  CAS  Google Scholar 

  • Ryu JH, Yoon J-W, Shim KB (2005) Blue-luminescence of nanocrystalline MWO4 phosphors synthesised via a citrate complex route assisted by microwave irradiation. Electrochem Solid-State Lett 8(5):D15–D18

    Article  CAS  Google Scholar 

  • Ryu JH, Yoon J-W, Shim KB, Koshizaki N (2006) Room- temperature deposition of nanocrystalline thin films by pulsed laser ablation. Appl Phys A 84:181–185

    Article  CAS  Google Scholar 

  • Tingyu L, Jianqi S, Qiren Z (2005) First-principles study on the electronic structures and absorption spectra for the PbWO4 crystal with lead vacancy. Solid State Commun 135:382–385

    Article  Google Scholar 

  • Wang WW, Zhu YJ (2005) Synthesis of PbCrO4 and Pb2CrO5 rods via a microwave assisted ionic liquid method. J Cryst Growth Des 5:505–507

    Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Encyclopedia of Nano-science and Nano-technology Vol. 1. In: Nalwa HS (ed) American Scientific Publishers, New York, pp 815–848

  • Xie J, Yang P, Yuan H, Liao J, Shen B, Yin Z, Cao D, Gu M (2005) Influence of Sb and Y co-doping on properties of PbWO4 crystal. J Cryst Growth 275:474–480

    Article  CAS  Google Scholar 

  • Yi Z, Liu T, Zhang Q, Sun Y (2006) First- principles study on the origin of optical transitions to be associated with F colour centers for PbWO4 crystals. J Electronic Spect Related Phenom 151:140–143

    Article  CAS  Google Scholar 

  • Zhang Y, Holzwarth NAW, Williams RT (1998) Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4 and PbWO4. Phys Rev B 57:12738–12750

    Article  CAS  Google Scholar 

  • Zhijun Y, Tingyu L, Qiren Z, Yuanyuan S (2006) Study of the electronic structures of scheelite and scheelite-like PbWO4. Phys Status Solidi (b) 243:1802–1807

    Article  Google Scholar 

  • Zhou G, Lu M, Gu F, Xu D, Yuan D (2005a) Morphology-controlled synthesis, characterization and growth mechanism of PbWO4 nano and macrocrystals. J Cryst Growth 276:577–582

    Article  CAS  Google Scholar 

  • Zhou G, Wang S, Lu M, Xiu Z, Zhang H (2005b) Surfactant-assisted synthesis and characterization of PbWO4 dendritic nanostructure. Mater Chem Phys 93:138–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. T.N. Guru Row, SSCU, IISc, Bangalore and Dr. Peter Koshy of RRL Trivandrum for their valuable help rendered in structural characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, T., Joseph, S., Sunny, A.T. et al. Fascinating morphologies of lead tungstate nanostructures by chimie douce approach. J Nanopart Res 10, 567–575 (2008). https://doi.org/10.1007/s11051-007-9285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9285-8

Keywords

Navigation