Skip to main content
Log in

Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

As-produced single-walled carbon nanotube (SWCNT) material is a complex matrix of carbon nanotubes, bundles of nanotubes (nanoropes), non-tubular carbon and metal catalyst nanoparticles. The pulmonary toxicity of material released during manufacture and handling will depend on the partitioning and arrangement of these components within airborne particles. To probe the physicochemical structure of airborne SWCNT aggregates, a new technique was developed and applied to aerosolized as-produced material. Differential Mobility Analysis-classified aggregates were analyzed using an Aerosol Particle Mass Monitor, and a structural parameter Γ (proportional to the square of particle mobility diameter, divided by APM voltage) derived. Using information on the constituent components of the SWCNT, modal values of Γ were estimated for specific particle compositions and structures, and compared against measured values. Measured modal values of Γ for 150 nm mobility diameter aggregates suggested they were primarily composed of non-tubular carbon from one batch of material, and thin nanoropes from a second batch of material – these findings were confirmed using Transmission Electron Microscopy. Measured modal values of Γ for 31 nm mobility diameter aggregates indicated that they were comprised predominantly of thin carbon nanoropes with associated nanometer-diameter metal catalyst particles; there was no indication that either catalyst particles or non-tubular carbon particles were being preferentially released into the air. These results indicate that the physicochemistry of aerosol particles released while handling as-produced SWCNT may vary significantly by particle size and production batch, and that evaluations of potential health hazards need to account for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronikowski M.J., Willis P.A., Colbert D.T., Smith K.A., Smalley R.E. (2001). Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPCO® process: A parametric study. J. Vac. Sci. Technol. A.-Vac. Surf. Films 19(4): 1800–1805

    Article  CAS  Google Scholar 

  • Ehara K., Hagwood C., Coakley K.J. (1996). Novel method to classify aerosol particles according to their mass-to-charge ratio – aerosol particle mass analyzer. J. Aerosol Sci. 27(2): 217–234

    Article  CAS  Google Scholar 

  • Keller A., Fierz M., Siegmann K., Siegmann H.C., Filippov A. (2001). Surface science with nanosized particles in a carrier gas. J. Vacuum Sci. Technol. Vacuum Surf. Films 19(1): 1–8

    Article  CAS  Google Scholar 

  • Knutson E.O., Whitby K.T. (1975). Aerosol classification by electrical mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6: 443–451

    Article  Google Scholar 

  • Ku B.K., Maynard A.D. (2005). Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. J. Aerosol Sci. 36(9): 1108–1124

    Article  CAS  Google Scholar 

  • Lam C.-W., James J.T., McCluskey R., Hunter R.L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77: 126–134

    Article  CAS  Google Scholar 

  • Maynard A.D. (1995). The development of a new thermophoretic precipitator for scanning-transmission electron-microscope analysis of ultrafine aerosol-particles. Aerosol Sci. Technol. 23(4): 521–533

    CAS  Google Scholar 

  • Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single walled carbon nanotube material. J. Toxicol. Environ. Health 67(1): 87–107

    CAS  Google Scholar 

  • McMurry P.H., Wang X., Park K., Ehara K. (2002). The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36(2): 227–238

    Article  CAS  Google Scholar 

  • Oberdörster G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit & H. Yang, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fiber Toxicol. 2(8): doi:10.1186/1743-8977-2-8

  • Park K., Kittelson D.B., McMurry P.H. (2004a). Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci. Tech. 38(9): 881–889

    Article  CAS  Google Scholar 

  • Park K., Kittelson D.B., Zachariah M.R., McMurry P.H. (2004b). Measurement of inherent material density of nanoparticle agglomerates. J. Nanopart. Res. 62(2): 267–272

    Article  Google Scholar 

  • Rogak S.N., Flagan R.C., Nguyen H.V. (1993). The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18(1): 25–47

    CAS  Google Scholar 

  • Shvedova A.A., Kisin E.R., Mercer R., Murray A.R., Johnson V.J., Potapovich A.I., Tyurina Y.Y., Gorelik O., Arepalli S., Schwegler-Berry D., Hubbs A.F., Antonini J., Evans D.E., Ku B.K., Ramsey D., Maynard A., Kagan V.E., Castranova V., Baron P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol.-Lung Cell. Mol. Physiol. 289: 698–708

    Article  Google Scholar 

  • Shvedova A.A., Kisin E.R., Murray A.R., Gandelsman V.Z., Maynard A.D., Baron P.A., Castranova V. (2003). Exposure to carbon nanotube material: Assessment of the biological effects of nanotube materials using human keratinocyte cells. J. Toxicol. Environ. Health 66(20): 1909–1926

    CAS  Google Scholar 

  • Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A.M., Webb T.R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77: 117–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Maynard.

Additional information

Disclaimer: The mention of any company or product does not constitute an endorsement by the Centers for Disease Control and Prevention. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maynard, A.D., Ku, B.K., Emery, M. et al. Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J Nanopart Res 9, 85–92 (2007). https://doi.org/10.1007/s11051-006-9178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9178-2

Keywords

Navigation