Skip to main content
Log in

A simple and versatile mini-arc plasma source for nanocrystal synthesis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystals in the lower-nanometer-size range are attracting growing interest due to their unique properties. A simple and versatile atmospheric direct current mini-arc plasma source has been developed to produce nanoparticles as small as a few nanometers. The nanoparticles are formed by direct vaporization of solid precursors followed by a rapid quenching. Both semiconductor tin oxide and metallic silver nanoparticles have been produced at rates of 1–10 mg/h using the mini-arc source. Transmission electron microscopy and X-ray diffraction analyses indicate that most nanoparticles as produced are nonagglomerated and crystalline. Size distributions of nanoparticles measured with an online scanning electrical mobility spectrometer are broader than the self-preserving distribution, suggesting that the nanoparticle growth is coagulation-dominated, and that the particles experience a range of residence times. The electrical charges carried by as-produced aerosol nanoparticles facilitate the manipulation of nanoparticles. The new mini-arc plasma source hence shows promise to accelerate the exploration of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271: 933–937

    Article  CAS  Google Scholar 

  • Backman U., Jokiniemi J.K., Auvinen A., Lehtinen K.E.J. (2002) The effect of boundary conditions on gas-phase synthesised silver nanoparticles. J. Nanoparticle Res. 4: 325–335

    Article  CAS  Google Scholar 

  • Botti S., Celeste A., Coppola R. (1998) Particle size control and optical properties of laser-synthesized silicon nanopowders. Appl. Organomet. Chem. 12(5): 361–365

    Article  CAS  Google Scholar 

  • Boulaud D. (1993) Aerosol production by laser ablation. In: Marijnissen C.M., Pratsinis S.E. (eds) Synthesis and Measurement of Ultrafine Particles. Delft University Press, Delft, pp. 31–40

    Google Scholar 

  • Camata, R.P. (1998) Aerosol synthesis and characterization of silicon nanocrystals, Ph.D. Thesis, California Institute of Technology, Pasadena, CA.

  • Camata R.P., Atwater H.A., Vahala K.J., Flagan R.C. (1996) Size classification of silicon nanocrystals. Appl. Phys. Lett. 68(22): 3162–3164

    Article  CAS  Google Scholar 

  • Chang H., Lenggoro I.W., Okuyama K., Kim T.O. (2004) Continuous single-step fabrication of nonaggregated, size-controlled and cubic nanocrystalline Y2O3:Eu3+ phosphors using flame spray pyrolysis. Jpn. J. Appl. Phys. Part 1 43(6A): 3535–3539

    Article  CAS  Google Scholar 

  • Chen D.R., Pui D.Y.H., Hummes D., Fissan H., Quant F.R., Sem G.J. (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (nano-DMA). J. Aerosol Sci. 29(5–6): 497–509

    Article  CAS  Google Scholar 

  • Chen J.H. & G.H. Lu, 2006. Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 17(12), 2891–2894

    Google Scholar 

  • Denbigh K. (1981) The Principles of Chemical Equilibrium 4th ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Ding Z.F., Quinn B.M., Haram S.K., Pell L.E., Korgel B.A., Bard A.J. (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571): 1293–1297

    Article  CAS  Google Scholar 

  • Flagan R.C., Lunden M.M. (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A 204: 113–124

    Article  Google Scholar 

  • Flint J.H., Haggerty J.S. (1990) A model for the growth of silicon particles from laser-heated gases. Aerosol Sci. Technol. 13(1): 72–84

    CAS  Google Scholar 

  • Friedlander S.K. (1977) Smoke, dust, and haze: Fundamentals of aerosol behavior. Wiley, New York

    Google Scholar 

  • Fritzsche W., Taton T.A. (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14(12): R63-R73

    Article  CAS  Google Scholar 

  • Girshick S.L., Chu C.P., Muno R., Wu C.Y., Yang L., Singh S.K., McMurry P.H. (1993) Thermal plasma synthesis of ultrafine iron particles. J. Aerosol Sci. 24(3): 367–382

    Article  CAS  Google Scholar 

  • Holunga D.M., Flagan R.C., Atwater H.A. (2005) A scalable turbulent mixing aerosol reactor for oxide-coated silicon nanoparticles. Ind. Eng. Chem. Res. 44(16): 6332–6341

    Article  CAS  Google Scholar 

  • Jenkins R., Snyder R.L. (1996) Introduction to X-ray Powder Diffractometry. Wiley, New York

    Google Scholar 

  • Kennedy M.K., Kruis F.E., Fissan H. (2000) Gas phase synthesis of size selected SnO2 nanoparticles for gas sensor applications. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2 343-3:949–954

    Google Scholar 

  • Kennedy M.K., Kruis F.E., Fissan H., Mehta B.R., Stappert S., Dumpich G. (2003) Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys. 93(1): 551–560

    Article  CAS  Google Scholar 

  • Lee D., Yang S.S., Choi M. (2001) Controlled formation of nanoparticles utilizing laser irradiation in a flame and their characteristics. Appl. Phys. Lett. 79(15): 2459–2461

    Article  CAS  Google Scholar 

  • Lide D.R. (1990–1991) CRC Handbook of Chemistry and Physics. 71st Ed. CRC Press, Boca Raton, pp. 5–70

    Google Scholar 

  • Lu Y., Liu G.L., Lee L.P. (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5(1): 5–9

    Article  CAS  Google Scholar 

  • Madler L., Roessler A., Pratsinis S.E., Sahm T., Gurlo A., Barsan N., Weimar U. (2006) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B Chem. 114(1): 283–295

    Article  Google Scholar 

  • Mahoney W., Andres R.P. (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporator. Mater. Sci. Eng. A 204: 160–164

    Article  Google Scholar 

  • Makela J.M., Keskinen H., Forsblom T., Keskinen J. (2004) Generation of metal and metal oxide nanoparticles by liquid flame spray process. J. Mater. Sci. 39(8): 2783–2788

    Article  Google Scholar 

  • Mangolini L., Thimsen E., Kortshagen U. (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4): 655–659

    Article  CAS  Google Scholar 

  • Munz R.J., Addona T., da Cruz A.-C. (1999) Application of transferred arcs to the production of nanoparticles. Pure Appl. Chem. 71(10): 1889–1897

    CAS  Google Scholar 

  • Murray C.B., Norris D.J., Bawendi M.G. (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19): 8706–8715

    Article  CAS  Google Scholar 

  • Namiki N., Cho K., Fraundorf P., Biswas P. (2005) Tubular reactor synthesis of doped nanostructured titanium dioxide and its enhanced activation by coronas and soft X-rays. Ind. Eng. Chem. Res. 44(14): 5213–5220

    Article  CAS  Google Scholar 

  • Nichols W.T., Malyavanatham G., Henneke D.E., O’Brien D.T., Becker M.F., Keto J.W. (2002) Bimodal nanoparticle size distributions produced by laser ablation of microparticles in aerosols. J. Nanoparticle Res. 4(5): 423–432

    Article  CAS  Google Scholar 

  • Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Atwater H.A., Flagan R.C. (2001) Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. J. Electrochem. Soc. 148(5): G265–G270

    Article  CAS  Google Scholar 

  • Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Brongersma M.L., Casperson J., Flagan R.C., Atwater H.A. (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3): 433–435

    Article  CAS  Google Scholar 

  • Park K., Lee D., Rai A., Mukherjee D., Zachariah M.R. (2005) Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109(15): 7290–7299

    Article  CAS  Google Scholar 

  • Prakash A., McCormick A.V., Zachariah M.R. (2005) Tuning the reactivity of energetic nanoparticles by creation of a core–shell nanostructure. Nano Lett. 5(7): 1357–1360

    Article  CAS  Google Scholar 

  • Rao N., Girshick S., Heberlein J., McMurry P., Jones S., Hansen D., Micheel B. (1995) Nanoparticle formation using a plasma expansion process. Plasma Chem. Plasma Process. 15(4): 581–606

    Article  CAS  Google Scholar 

  • Rao N., Micheel B., Hansen D., Fandrey C., Bench M., Girshick S., Heberlein J., McMurry P. (1995) Synthesis of nanophase silicon, carbon, and silicon-carbide powders using a plasma expansion process. J. Mater. Res. 10(8): 2073–2084

    CAS  Google Scholar 

  • Sahm T., Madler L., Gurlo A., Barsan N., Pratsinis S.E., Weimar U. (2004) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens. Actuators B Chem. 98(2–3): 148–153

    Article  Google Scholar 

  • Sankaran R.M., Holunga D., Flagan R.C., Giapis K.P. (2005) Synthesis of blue luminescent si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5(3): 537–541

    Article  CAS  Google Scholar 

  • Siegel R.W. (1993) Synthesis and properties of nanophase materials. Mater. Sci. Eng. A 168(2): 189–197

    Article  Google Scholar 

  • Wang S.C., Flagan R.C. (1990) Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13: 230–240

    CAS  Google Scholar 

  • Wang X., Hafiz J., Mukherjee R., Renault T., Heberlein J., Girshick S.L., McMurry P.H. (2005) System for in situ characterization of nanoparticles synthesized in a thermal plasma process. Plasma Chem. Plasma Process. 25(5): 439–453

    Article  CAS  Google Scholar 

  • Wiedensohler A. (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19(3): 387–389

    Article  CAS  Google Scholar 

  • Wiley B., Herricks T., Sun Y.G., Xia Y.N. (2004) Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4(9): 1739

    Article  Google Scholar 

  • Young R.M., Pfender E. (1985) Generation and behavior of fine particles in thermal plasmas—A review. Plasma Chem. Plasma Process. 5(1): 1–37

    Article  CAS  Google Scholar 

  • Yun C.M., Otani Y., Emi H. (1997) Development of unipolar ion generator-separation of ions in axial direction of flow. Aerosol Sci. Technol. 26: 389–397

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Professors Jesen Grant and Marija Gajdardziska-Josifovska for providing TEM access and Dr. Bill Tivol and Mr. Donald Robertson for technical support with TEM analyses. The financial support for this study was provided by XMX Corporation, National Science Foundation (CTS-0604079), and University of Wisconsin-Milwaukee. The TIG welder used was donated by Miller Electric Manufacturing Corporation. The work made use of X-Ray Facilities supported by the MRSEC program of the National Science Foundation (CMR-0076097) at the Materials Research Center of Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Lu, G., Zhu, L. et al. A simple and versatile mini-arc plasma source for nanocrystal synthesis. J Nanopart Res 9, 203–213 (2007). https://doi.org/10.1007/s11051-006-9168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9168-4

Keywords

Navigation