Skip to main content
Log in

The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bohren C.F., Huffman D.R. (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Google Scholar 

  • Chen G.X., Hong M.H., Lan B., Wang Z.B., Lu Y.F., Chong T.C. (2004) A Convenient way to prepare magnetic colloids by direct Nd:YAG laser ablation. Appl. Surf. Sci. 228: 169–175

    Article  CAS  Google Scholar 

  • Dolgave S.I., Simakin A.V., Voronov V.V., Shafeev G.A., Verduraz F.B. (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186: 546–551

    Article  Google Scholar 

  • Fu G., Cai W., Gan Y., Jia J. (2004) An ambience-induced optical absorption peak for Au/SiO2 mesoporous assembly. Chem. Phys. Lett. 385: 15–19

    Article  CAS  Google Scholar 

  • Hayens C.L., McFarland A.D., Zhao L., Duyne R.P.V., Schatz G.C., Gunnarsson L., Prikulis J., Kasemo B., Kall M. (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107: 7337–7342

    Article  Google Scholar 

  • Hodak J.H., Henglein A., Giersig M., Hartland G.V. (2000) Photophysics of nanometer sized metal particles: electron–phonon coupling and coherent excitation of breathing vibrational modes. J. Phys. Chem. B 104: 11708–11718

    Article  CAS  Google Scholar 

  • Huang Y., Li D., Li J. (2004) β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires. Chem. Phys. Lett. 389: 14–18

    Article  CAS  Google Scholar 

  • Inasawa S., Sugiyama M., Koda S. (2003) Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulse. Jpn. Appl. Phys. 42: 6705–6712

    Article  CAS  Google Scholar 

  • Liao J., Zhang Y., Xu W.Y.L., Ge C., Liu J. (2003a) Linear aggregation of gold nanoparticles in ethanol. Coll. Surf. A: Physicochem. Eng. Aspects 223: 177–183

    Article  CAS  Google Scholar 

  • Liao J.H., Chen K.J., Xu L.N., Ge C.W., Wang J., Huang L., Gu N. (2003b) Self-assembly of length-tunable gold nanoparticle chains in organic solvents. Appl. Phys. A. 76: 541–543

    Article  CAS  Google Scholar 

  • Link S., Mohamed M.B., El-sayed M.A. (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103: 3073–3077

    Article  CAS  Google Scholar 

  • Mafune F., Kohno J., Takeda Y., Kondow T. (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J. Phys. Chem. B 105: 9050–9056

    Article  CAS  Google Scholar 

  • Mafune F. (2004) Structural diagram of gold nanoparticles in solution under irradiation of UV pulse laser. Chem. Phys. Lett. 394: 133–137

    Article  Google Scholar 

  • Mafune F., Kohno J., Takeda Y., Kondow T. (2003) Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B. 107: 4218–4223

    Article  CAS  Google Scholar 

  • Norman T.J., Grant C.D., Schwartzberg A.M., Zhang J.Z. (2005) Structural correlations with shift in the extended plasma resonance of gold nanoparticle aggregates. Optical Mater. 27: 1197–1203

    Article  CAS  Google Scholar 

  • Mafune F., Kohno J., Takeda Y., Kondow T., Sawabe H. (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104: 9111–9117

    Article  CAS  Google Scholar 

  • Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solution or arranged in 2D or 3D superlattices. New J. Chem. 22, 693–702

    Google Scholar 

  • Quintana M., Haro-Poniatowski E., Morales J., Batina N. (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 195: 175–186

    Article  CAS  Google Scholar 

  • Rao C.N.R., A. Muller & A.K. Cheetham, 2004. The Chemistry of Nanomaterials., Vol. 1., Wiley-VCH

  • Sasaki T., Liang C., Nichols W.T., Shimizu Y., Koshizaki N. (2004) Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A. 79: 1489–1492

    Article  CAS  Google Scholar 

  • Seto T., Orii T., Hirasawa M., Aya N. (2003) Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation. Thin Solid Films 437: 230–234

    Article  CAS  Google Scholar 

  • Shim J.H., Lee B., Cho Y.W. (2002) Thermal stability of unsupported nanoparticle: a molecular dynamics study. Surf. Sci. 512: 262–268

    Article  CAS  Google Scholar 

  • Simakin A.V., Voronov V.V., Kirichenko N.A., Shafeev G.A. (2004) Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A 79: 1127–1132

    Article  CAS  Google Scholar 

  • Sun X., Dong S., Wang E. (2003) One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 45: 2181–2184

    Article  Google Scholar 

  • Tarasenko N.V., Butsen A.V., Nevar E.A. (2005) Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids. Appl. Surf. Sci. 247: 418–422

    Article  CAS  Google Scholar 

  • Tilaki R.M., Iraji zad A., Mahdavi S.M. (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A 84: 215–219

    Article  CAS  Google Scholar 

  • Tsuji T., Iryo K., Watanabe N., Tsuji M. (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202: 80–85

    Article  CAS  Google Scholar 

  • Tsuji T., Hamagami T., Kawamura T., Yamaki J., Tsuji M. (2005) Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Appl. Surf. Sci. 243: 214–219

    Article  CAS  Google Scholar 

  • Ullmann M., Friedlander S.K., Schmidt-Ott A. (2002) Nanoparticle formation by laser ablation. J. Nanoparticles Res. 4: 499–509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Taghavinia for valuable comments, F. Hessari and F. S. Torknic from Materials and Energy Research Center for TEM data. This work was financially supported by the Ministry of Science, Research and Technology, and High Tech. Center of the Ministry of Industries and Mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iraji zad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilaki, R.M., zad, A.I. & Mahdavi, S.M. The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J Nanopart Res 9, 853–860 (2007). https://doi.org/10.1007/s11051-006-9143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9143-0

Keywords

Navigation