Skip to main content
Log in

Solving the subset-sum problem with a light-based device

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We propose an optical computational device which uses light rays for solving the subset-sum problem. The device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible subsets of the given set. To each arc we assign either a number from the given set or a predefined constant. When the light is passing through an arc it is delayed by the amount of time indicated by the number placed in that arc. At the destination node we will check if there is a ray whose total delay is equal to the target value of the subset sum problem (plus some constants). The proposed optical solution solves a NP-complete problem in time proportional with the target sum, but requires an exponential amount of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaronson S (2005) NP-complete problems and physical reality, ACM SIGACT News Complexity Theory Column, March. ECCC TR05-026, quant-ph/0502072

  • Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  • Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley-Interscience

  • Bajcsy M, Zibrov AS, Lukin MD (2003) Stationary pulses of light in an atomic medium. Nature 426:638–641

    Article  Google Scholar 

  • Bringsjord S, Taylor J (2004) P = NP, cs.CC/0406056

  • Cormen TH, Leiserson CE, Rivest RR (1990) Introduction to algorithms. MIT Press

  • Faist J (2005) Optoelectronics: silicon shines on. Nature 433:691–692

    Article  Google Scholar 

  • Feitelson DG (1988) Optical computing: a survey for computer scientists, MIT Press

  • Flyckt SO, Marmonier C (2002) Photomultiplier tubes: principles and applications. Photonis, Brive, France

    Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to NP-completeness. Freeman & Co, San Francisco, CA

    MATH  Google Scholar 

  • Gilmore PC, Gomory RE (1965) Multistage cutting stock problems of two and more dimensions. Oper Res 13(1):94–120

    Article  MATH  Google Scholar 

  • Goodman JW (1982) Architectural development of optical data processing systems. Aust J Electr Electron Eng 2:139–149

    Google Scholar 

  • Haist T and Osten W (2007) An optical solution for the traveling salesman problem. Opt Express 15:10473–10482

    Article  Google Scholar 

  • Hartmanis J (1995) On the weight of computations. B EATCS 55:136–138

    MATH  Google Scholar 

  • Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 m per second in an ultracold atomic gas. Nature 397:594–598

    Article  Google Scholar 

  • Kieu TD (2003) Quantum algorithm for Hilbert’s tenth problem. Int J Theor Phys 42:1461–1478

    Article  MATH  MathSciNet  Google Scholar 

  • Lenslet website (2005) http://www.lenslet.com

  • Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409:490–493

    Article  Google Scholar 

  • Murphy N, Naughton TJ, Woods D, Henley B, McDermott K, Duffy E, van der Burgt PJM, Woods N (2006) Implementations of a model of physical sorting. In: Adamatzky A, Teuscher C (eds) From Utopian to genuine unconventional computers workshop, Luniver Press, pp 79–100

  • Naughton TJ (2000) A model of computation for Fourier optical processors. In: Lessard RA, Galstian T (eds) Optics in computing, Proceedings SPIE 4089:24–34

  • Oltean M (2006) A light-based device for solving the Hamiltonian path problem. In: Calude C et al (eds) Unconventional computing LNCS 4135, Springer-Verlag, pp 217–227

  • Oltean M (2007) Solving the Hamiltonian path problem with a light-based computer. Nat Comput doi:10.1007/s11047-007-9042-z

  • Paniccia M, Koehl S (2005) The silicon solution. IEEE Spectrum, IEEE Press, October

  • Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical computing with the discrete Fourier transform primitive. Appl Optics 36(29):7327–7340

    Article  Google Scholar 

  • Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M (2005a) A continuous-wave Raman silicon laser. Nature 433:725–728

    Article  Google Scholar 

  • Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M (2005b) An all-silicon Raman laser. Nature 433:292–294

    Article  Google Scholar 

  • Schultes D (2005) Rainbow Sort: sorting at the speed of light. Nat Comput, Springer-Verlag 5(1):67–82

  • Shaked NT, Messika S, Dolev S and Rosen J (2007) Optical solution for bounded NP-complete problems. Appl Optics 46:711–724

    Article  Google Scholar 

  • Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26(5):1484–1509

    Article  MATH  MathSciNet  Google Scholar 

  • Thoughts on the subset sum problem (P vs. NP) (accessed 2006) http://idrone.net/2006/06/11/thoughts-on-the-subset-sum-problem-p-vs-np

  • Vergis A, Steiglitz K, Dickinson B (1986) The complexity of analog computation. Math Comput Simulat 28:91–113

    Article  MATH  Google Scholar 

  • Woods D, Naughton TJ (2005) An optical model of computation. Theor Comput Sci 334 (1–3):227–258

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Oltean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oltean, M., Muntean, O. Solving the subset-sum problem with a light-based device. Nat Comput 8, 321–331 (2009). https://doi.org/10.1007/s11047-007-9059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-007-9059-3

Keywords

Navigation