Skip to main content
Log in

The Lichen Connections of Black Fungi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Many black meristematic fungi persist on rock surfaces—hostile and exposed habitats where high doses of radiation and periods of desiccation alternate with rain and temperature extremes. To cope with these extremes, rock-inhabiting black fungi show phenotypic plasticity and produce melanin as cell wall pigments. The rather slow growth rate seems to be an additional prerequisite to oligotrophic conditions. At least some of these fungi can undergo facultative, lichen-like associations with photoautotrophs. Certain genera presenting different lifestyles are phylogenetic related among the superclass Dothideomyceta. In this paper, we focus on the genus Lichenothelia, which includes border-line lichens, that is, associations of melanised fungi with algae without forming proper lichen thalli. We provide a first phylogenetic hypothesis to show that Lichenothelia belongs to the superclass Dothideomyceta. Further, culture experiments revealed the presence of co-occurring fungi in Lichenothelia thalli. These fungi are related to plant pathogenic fungi (Mycosphaerellaceae) and to other rock-inhabiting lineages (Teratosphaeriaceae). The Lichenothelia thallus-forming fungi represent therefore consortia of different black fungal strains. Our results suggest a common link between rock-inhabiting meristematic and lichen-forming lifestyles of ascomycetous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmadjian V. The lichen symbiosis. Massachusetts: Blaisdell Publishing Company; 1967.

    Google Scholar 

  2. Athienza V, Hawksworth DL. Lichenothelia renobalesiana sp. nov. (Lichenotheliaceae), for a lichenicolous ascomycete confused with Polycoccum opulentum (Dacampiaceae). The Lichenologist. 2008;40:87–96.

    Google Scholar 

  3. Brunauer G, Blaha J, Hager A, Turk R, Stocker-Worgotter E, Grube M. An isolated lichenicolous fungus forms lichenoid structures when co-cultured with various coccoid algae. Symbiosis. 2007;44:127–36.

    CAS  Google Scholar 

  4. Bubrick P, Galun M. Spore to spore resynthesis of Xanthoria parietina. The Lichenologist. 1986;18:47–9.

    Article  Google Scholar 

  5. Catalayud V, Naverro-Rosines P, Hafellner J. A synopsis of Lichenostigma subgen. Lichenogramma (Arthoniales), with a key to the species. Myc Res. 2002;106:1230–42.

    Article  Google Scholar 

  6. Cubero OF, Crespo A, Fatehi J, Bridge PD. DNA extraction and PCR amplification method suitable for fresh, herbarium stored and lichenized fungi. Plant Syst Evol. 1999;217:243–9.

    Article  Google Scholar 

  7. Fernadez-Brime S, Llimona X, Navarro-Rosines P. Lichenostigma rupicolae (Lichenotheliaceae), a new lichenocolous species growing on Pertusaria rupicola. The Lichenologist. 2010;42:241–7.

    Article  Google Scholar 

  8. Friedmann EI, Kappen L, Meyer MA, Nienow JA. Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol. 1993;25:51–69.

    Article  PubMed  CAS  Google Scholar 

  9. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes. Application for the identification of mycorrhizae and rust. Mol Ecol. 1993;2:113–8.

    Article  PubMed  CAS  Google Scholar 

  10. Gargas A, Taylor JW. Polymerase chain reaction (PCR) primers for amplifying, sequencing nuclear 18S rDNA from lichenized fungi. Mycologia. 1992;84:589–92.

    Article  CAS  Google Scholar 

  11. Gorbushina AA, Broughton WJ. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Ann Rev Microbiol. 2009;63:431–50.

    Article  CAS  Google Scholar 

  12. Gorbushina AA, Beck A, Schulte A. Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Myc Res. 2005;109:1288–96.

    Article  Google Scholar 

  13. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI. Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Can J Bot. 2003;81:131–8.

    Article  CAS  Google Scholar 

  14. Gueidan C, Ruibal C, De Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fun Biol. 2011;115:987–96.

    Article  Google Scholar 

  15. Hafellener J. Studien über lichenicole Pilze und Flechten II. Lichenostigma maureri gen et spec. nov., ein in den Ostalpen häufiger lichenicoler Pilz (Ascomycota, Arthoniales). Herzogia. 1982;6:299–308.

    Google Scholar 

  16. Halici MG, Kocakaya M, Aksoy A. Lichenostigma anatolicum sp. nov. (Ascomycota, Lichenotheliaceae) on a brown Acarospora from central Turkey. Mycotaxon. 2009;108:67–72.

    Article  Google Scholar 

  17. Hall TA. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Ac Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  18. Harutyunyan S, Muggia L, Grube M. Black fungi in lichens from seasonally arid habitats. Stud Mycol. 2008;61:83–90.

    Article  PubMed  CAS  Google Scholar 

  19. Hawksworth DL. Lichenothelia, a new genus for the Microthelia aterrima group. The Lichenologist. 1981;13:141–53.

    Article  Google Scholar 

  20. Huelsenbeck JP, Ronquist F. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.

    Article  Google Scholar 

  21. Ihlen PG. A new species of Lichenostigma (Lichenotheliaceae, Arthoniales) from Scandinavia. The Lichenologist. 2004;36:183–9.

    Article  Google Scholar 

  22. Kauff F, Lutzoni F. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phyl Evol. 2002;25:138–56.

    Article  CAS  Google Scholar 

  23. Knudsen K, Kocourkova J. A new Lichenostigma species (genus incertae sedis) from southern California. The Bryologist. 2010;113:229–34.

    Article  Google Scholar 

  24. Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B. Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Myc Progr. 2004;3:51–6.

    Article  Google Scholar 

  25. Lilly VG, Barnett HL. Physiology of fungi. New York: McGrow-Hill; 1951.

    Google Scholar 

  26. Meson-Gamer R, Kellogg E. Testing for phylogenetic conflict among molecular dataset in the tribe Triticeae (Gramiae). Syst Biol. 1996;45:524–45.

    Article  Google Scholar 

  27. Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006;98:1088–103.

    Article  PubMed  CAS  Google Scholar 

  28. Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M. The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res. 2008;112:50–6.

    Article  PubMed  CAS  Google Scholar 

  29. Muggia L, Gueidan C, Grube M. Phylogenetic placement of some morphologically unusual members of Verrucariales. Mycologia. 2010;102:835–46.

    Article  PubMed  CAS  Google Scholar 

  30. Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tønsberg T, Spribille T. Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot. 2011;98:1647–56.

    Article  PubMed  Google Scholar 

  31. Nelsen MP, Lücking R, Mbatchou JS, Andrew CJ, Spielmann AA, Lumbsch HT. New insights into relationships of lichen-forming Dothideomycetes. Fun Div. 2011;51:155–62.

    Article  Google Scholar 

  32. Nelsen MP, Lucking R, Grube M, Mbatchou JS, Muggia L, Plata ER, Lumbsch HT. Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol. 2009;64:135–44.

    Article  PubMed  CAS  Google Scholar 

  33. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L. Evolution and adaptation of fungi at boundaries of life. Adv Space Res. 2007;40:657–1664.

    Article  Google Scholar 

  34. Page RDM. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:357–8.

    PubMed  CAS  Google Scholar 

  35. Perez-Ortega S, Catalayud V. Lichenostigma epirupestre, a new lichenicolous species on Pertusaria from Spain. Mycotaxon. 2009;107:189–95.

    Article  Google Scholar 

  36. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinf Appl Notes. 1998;14:817–8.

    Article  CAS  Google Scholar 

  37. Reeb V, Lutzoni F, Roux C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phyl Evol. 2004;32:1036–60.

    Article  CAS  Google Scholar 

  38. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol. 2009;64:123–33.

    Article  PubMed  CAS  Google Scholar 

  39. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud Myc. 2009;64:1–15.

    Article  CAS  Google Scholar 

  40. Stamatakis A, Ludwig T, Meier H. RAxML-iii: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63.

    Article  PubMed  CAS  Google Scholar 

  41. Stocker-Wörgötter E. Investigating the production of secondary compounds in cultured lichen mycobionts. In: Kanner I, Beckett RP, Varma AK, editors. Protocol in lichenology, culturing biochemistry, ecophysiology and use in biomonitoring. Berlin: Springer; 2002. p. 296–306.

    Chapter  Google Scholar 

  42. Turian G. Coniosporium aeroalgicolum sp. nov.—a dematiaceous fungus living in balanced parasitism with aerial algae. Bulletin de la Societe Botanique Suisse. 1977;87:19–24.

    Google Scholar 

  43. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacter. 1990;172:4238–46.

    CAS  Google Scholar 

  44. Yamamoto Y, Kinoshita Y, Yoshimura I. Culture of thallus fragments and re-differentiation of lichens. In: Kanner I, Beckett RP, Varma AK, editors. Protocol in lichenology, culturing biochemistry, ecophysiology and use in biomonitoring. Berlin: Springer; 2002. p. 34–46.

    Chapter  Google Scholar 

Download references

Acknowledgments

LM and MG are grateful to the Austrian Science Foundation for financial support (FWF P24114). We thank Cene Gostinčar and Josef Hafellner for constructive discussions and Jana Kocourková for field co-work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Muggia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muggia, L., Gueidan, C., Knudsen, K. et al. The Lichen Connections of Black Fungi. Mycopathologia 175, 523–535 (2013). https://doi.org/10.1007/s11046-012-9598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9598-8

Keywords

Navigation