Skip to main content
Log in

Mechanism of Energy Transfers to Smaller Scales Within the Rotational Internal Wave Field

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We discuss the effect of the earth rotation on the two-triad interaction and the oceanic energy distribution processes that occur between five coupled internal gravity waves. The system we study is a two-triad test wave system consisting of an initial wave of the tidal M 2 frequency interacting with four recipient waves forming two resonant triads. It is shown that the general mechanism of an arbitrarily large number of internal wave interactions can be described by a three classes of interactions which we call the sum, middle and difference interaction classes. The four latitude singularities are distinguished for the particular case of five interacting waves and all three classes of resonant interactions are studied separately at those critical values. It is shown that the sum and difference interaction classes represent the latitude-inferior and latitude-predominant classes respectively. The phenomenon of coalescence of the middle and difference interaction classes is observed along latitude 48.25° N. It shown that at this value of latitude, the coalescence phenomenon provides the analogy between rotating and reflecting internal waves from slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, J.A., Bloembergen, N., Ducuing, J. Pershan, P.S.: Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  Google Scholar 

  2. Craik, A.D.D.: Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50, 393–413 (1971)

    Article  MATH  ADS  Google Scholar 

  3. Furevik, T., Foldvik, A.: Stability at M 2 critical latitude in the Barents Sea. Geophys. Res. 101(C4), 8823–8837 (1996)

    Article  ADS  Google Scholar 

  4. Garrett, C.J.R, Munk, W.H.: Space time scale of internal waves. A progress report. J. Geophys. Res. 80, 291–297 (1975)

    Article  ADS  Google Scholar 

  5. Garrett, C.J.R, Munk, W.H.: Internal waves in the ocean. Annu. Rev. Fluid Mech. 11, 339–369 (1979)

    Article  ADS  Google Scholar 

  6. Heney, F.S., Wright, J., Flatte, S.M.: Energy and action flow through the internal wave field—an eikonal approach. J. Geophys. Res. 91(C7), 8487–8495 (1986)

    Article  ADS  Google Scholar 

  7. Hibiya, T., Niwa, Y., Fujiwara, K.: Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res. 101(C6), 123–129 (1996)

    Article  Google Scholar 

  8. Hur, M.S., Hwang, I., Jang, H.J., Suk, H.: Effects of the frequency detuning in Raman backscattering of infinitely long laser puleses in plasmas. Phys. Plasmas 13, 73–103 (2006)

    Article  Google Scholar 

  9. Ibragimov, R.N., Ibragimov, N.H.: Effects of rotation on self-resonant internal gravity waves in the ocean. Ocean Model. 31, 80–87 (2010)

    Article  ADS  Google Scholar 

  10. Jurkus, A., Robinson, P.N.: Saturation effects in a traveling-wave parametric amplifier. Proc. IEE Part B 107, 119–122 (1960)

    Article  Google Scholar 

  11. Kim, W., West, B.J.: Chaotic properties of internal wave triad interactions. Phys. Fluids 9(3), 632–641 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Laurent, L., Garrett, C.: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 2882–2899 (2000)

    Article  Google Scholar 

  13. Longuet-Higgins, M.S., Gill, A.E.: Resonant interactions between planetary waves. Proc. R. Soc. Lond. A 299, 120–128 (2004)

    ADS  Google Scholar 

  14. MacKinnon, J., Winters, K.: Tidal mixing hotspots governed by rapid parametric subharmonic instability. J. Phys. Oceanogr. (2008, to appear)

  15. McComas, C.H.: Equilibrium mechanisms within the internal wave field. J. Phys. Oceanogr. 7, 836–845 (1977)

    Article  ADS  Google Scholar 

  16. McComas, C.H., Bretherton, F.: Resonant interaction of oceanic internal waves. J. Geophys. Res. 82(9), 1397–1412 (1977)

    Article  ADS  Google Scholar 

  17. McGoldrick, L.F.: Resonant interactions among capillary-gravity waves J. Fluid Mech. 21, 305–332 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Muller, P., Naratov, A.: The internal wave action model (IWAM). In: Proceedings, Aha Huliko’a Hawaiian Winter Workshop, School of Ocean and Earth Science and Technology, Special Publication (2003)

  19. Needler, G.T.: Dispersion in the ocean by physical, geochemical and biological processes. Philos. Trans. R. Soc. Lond., A 319, 177–187 (1986)

    Article  ADS  Google Scholar 

  20. Phillips, O.M.: On the dynamics of unsteady gravity waves of finite amplitude. J. Fluid Mech. 9, 193–217 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Phillips, O.M.: The Dynamics of the Upper Ocean. Cambridge University Press, New York (1966)

    MATH  Google Scholar 

  22. Polzin, K.L., Toole, J.M., Ledwell, J.R.: Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93–96 (1997)

    Article  Google Scholar 

  23. St. Laurent, L., Nash, J.: An examination of the radiative and dissipative properties of the internal tide. Deep-Sea Res. 51, 3029–3042 (2004)

    Article  Google Scholar 

  24. Thorpe, S.A.: On wave interaction in a stratified fluid. J. Fluid Mech. 24(4), 737–751 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Titman, C.W., Davis, P.A., Hilton, P.A.: Taylor columns in a shear flow and Jupiter’s Great Red Spot. Nature 255, 538–549 (1975)

    Article  ADS  Google Scholar 

  26. Veronis, G.: The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 37–66 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranis N. Ibragimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibragimov, R.N. Mechanism of Energy Transfers to Smaller Scales Within the Rotational Internal Wave Field. Math Phys Anal Geom 13, 331–355 (2010). https://doi.org/10.1007/s11040-010-9083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-010-9083-x

Keywords

Mathematics Subject Classifications (2010)

Navigation