Skip to main content
Log in

Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Allelic variation of BAT-25 (a 25-repeat quasimonomorphic poly T) and BAT-26 (a 26-repeat quasimonomorphic polyA) loci as two mononucleotide microsatellite markers, were analyzed with high-performance liquid chromatography (HPLC) compared with Real-Time PCR using hybridization probes. BAT-26 and BAT-25 markers were used to determine an appropriate screening technique with high sensitivity and specificity to diagnose microsatellite instability (MSI) status in patients with colorectal cancer (CRC). One of the pathways in colorectal tumor genesis is microsatellite instability (MSI+). MSI is detected in about 15 % of all CRCs; 3 % are of these are associated with Lynch syndrome and the other 12 % are caused by sporadic. Colorectal tumors with MSI have distinctive features compared with microsatellite stable tumors. Due to the high percentage of MSI+ CRC in Iran, screening of this type of CRC is imperative. Two markers were analyzed in tissues and sera of 44 normal volunteers and tumor and matched normal mucosal tissues as well as sera of 44 patients with sporadic CRC. The sensitivity and specificity of BAT-26 with real time PCR method (Hybridization probe) were 100 % in comparison with sequencing method as the gold standard, while HPLC had a lower sensitivity and specificity. According to HPLC data, BAT-26 was more sensitive than BAT-25 in identifying MSI tumors. Therefore, MSI typing using the BAT-26 hybridization probe method compared to HPLC could be considered as an accurate method for diagnosing MSI in CRC tumors but not in serum circulating DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merika E, Saif M, Katz A, Syrigos K, Morse M (2010) Colon cancer vaccines: an update. In Vivo 24:607–628

    CAS  PubMed  Google Scholar 

  2. Pineda M, Gonzalez S, Lazaro C, Blanco I, Capellá G (2010) Detection of genetic alterations in hereditary colorectal cancer screening. Mutat Res 693:19–31. doi:10.1016/j.mrfmmm.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46:2788–2798. doi:10.1016/j.ejca.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  4. Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130. doi:10.1111/j.1365-2559.2006.02549.x

    Article  CAS  PubMed  Google Scholar 

  5. Boland RC, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087. doi:10.1053/j.gastro.2009.12.064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jacob S, Praz F (2002) DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 84:27–47. doi:10.1016/S0300-9084(01)01362-1

    Article  CAS  PubMed  Google Scholar 

  7. Kim IJ, Shin Y, Kang HC, Park JH, Ku JL, Park HW, Park HR, Lim SB, Jeong SY, Kim WH, Park JG (2003) Robust microsatellite instability (MSI) analysis by denaturing high-performance liquid chromatography (DHPLC). Hum Genet 48:525–530. doi:10.1007/s10038-003-0070-y

    Article  CAS  Google Scholar 

  8. Cravo M, Lage P, Albuquerque C, Chaves P, Claro I, Gomes T, Gaspar C, Fidalgo P, Soares J, Nobre-Leitão C (1999) BAT-26 indentifies sporadic colorectal cancers with mutator phenotype: a correlative study with clinico-pathological features and mutations in mismatch repair genes. J Pathol 188:252–257. doi:10.1002/(SICI)1096-9896(199907)188

    Article  CAS  PubMed  Google Scholar 

  9. Samowitz WS, Slattery ML, Potter JD, Leppert MF (1999) BAT-26 and BAT-40 instability in colorectal adenomas and carcinomas and germline polymorphisms. Am J Pathol 154:1637–1641. doi:10.1016/S0002-9440(10)65418-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Goel A, Arnold CN, Niedzwiecki D (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63:1608–1614

    CAS  PubMed  Google Scholar 

  11. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087. doi:10.1053/Fj.gastro.2009.12.064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7(153–62):2009. doi:10.1038/Fnrclinonc.237

    Google Scholar 

  13. Brennetot C, Buhard O, Jourdan F, Flejou JF, Duval A, Hamelin R (2005) Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumors and predict tumor content: implications for population screening. Int J Cancer 113:446–450. doi:10.1002/ijc.20586

    Article  CAS  PubMed  Google Scholar 

  14. Kim MS, Lee J, Sidransky D (2010) DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29:181–206. doi:10.1007/s10555-010-9207-6

    Article  CAS  PubMed  Google Scholar 

  15. Shia J, Black D, Hummer AJ, Boyd J, Soslow RA (2008) Routinely assessed morphological features correlate with microsatellite instability status in endometrial cancer. Hum Pathol 39:116–125. doi:10.1016/j.humpath.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  16. Pyatt R, Chadwick RB, Johnson CK, Adebamowo C, De la Chapelle A, Prior TW (1999) Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Am J Pathol 155:349–353. doi:10.1016/S0002-9440(10)65131-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Pan KF, Liu W, Lu YY, Zhang L, Li ZP, Lu WL, Thibodeau SN, You WC (2003) High throughput detection of microsatellite instability by denaturing high-performance liquid chromatography. Hum Mutat 22:388–394. doi:10.1002/humu.10271

    Article  CAS  PubMed  Google Scholar 

  18. Dietmaier W, Hofstädter F (2001) Detection of microsatellite instability by real time PCR and hybridization probe melting point analysis. Lab Investig 81:1453–1456

    Article  CAS  PubMed  Google Scholar 

  19. Naghibalhossaini F, Mokarram P, Khalili I, Vasei M, Hosseini SV, Ashktorab H, Rasti M, Abdollahi K (2010) MTHFR C677T and A1298C variant genotypes and the risk of microsatellite instability among Iranian colorectal cancer patients. Cancer Genet Cytogenet 197:142–151. doi:10.1016/j.cancergencyto.2009.11.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Brim H, Mokarram P, Naghibalhossaini F, Saberi-Firoozi M, Al-Mandhari M, Al-Mawaly K, Al-Mjeni R, Al-Sayegh A, Raeburn S, Lee E, Giardiello F, Smoot DT, Vilkin A, Boland CR, Goel A, Hafezi M, Nouraie M, Ashktorab H (2008) Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations based study. Mol Cancer 21:68. doi:10.1186/1476-4598-7-68

    Article  Google Scholar 

  21. Janavicius R, Matiukaite D, Jakubauskas A, Griskevicius L (2010) Microsatellite instability detection by high-resolution melting analysis. Clin Chem 56:1750–1757. doi:10.1373/clinchem.2010.150680

    Article  CAS  PubMed  Google Scholar 

  22. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW, Vogelstein B (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135:489–498. doi:10.1053/j.gastro.2008.05.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Anker P, Mulcahy H, Chen XQ, Stroun M (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18:65–73

    Article  CAS  PubMed  Google Scholar 

  24. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, LA Diaz JR, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368. doi:10.1073/Fpnas.0507904102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, Palmieri C, Cleato S, Walker RA, Coombes RC (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22:220–231. doi:10.1101/Fgr.123497.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Madic J, Piperno-Neumann S, Servois V, Rampanou A, Milder M, Trouiller B, Gentien D, Saada S, Assayag F, Thuleau A, Nemati F, Decaudin D, Bidard FC, Desjardins L, Mariani P, Lantz O, Stern MH (2012) Pyrophosphorolysis-activated polymerization detects circulating tumor DNA in metastatic uveal melanoma. Clin Cancer Res 18:3934–3941. doi:10.1158/1078-0432.CCR-12-0309

    Article  CAS  PubMed  Google Scholar 

  27. Lecomte T, Ceze N, Dorval E, Laurent-Puig P (2010) Circulating free tumor DNA and colorectal cancer. Gastroenterol Clin Biol 34:662–681. doi:10.1016/j.gcb.2009.04.015

    Article  CAS  PubMed  Google Scholar 

  28. Nishio M, Sakakura C, Nagata T, Komiyama S, Miyashita A, Hamada T, Kuryu Y, Ikoma H, Kubota T, Kimura A, Nakanishi M, Ichikawa D, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Sonoyama T, Ida H, Ito K, Chiba T, Ito Y, Otsuji E (2010) RUNX3 promoter methylation in colorectal cancer: its relationship with microsatellite instability and its suitability as a novel serum tumor marker. Anticancer Res 30:2673–2682

    CAS  PubMed  Google Scholar 

  29. Sun X, Liu Y, Lutterbaugh J, Chen WD, Markowitz SD, Guo B (2006) Detection of mononucleotide repeat sequence alterations in a large background of normal DNA for screening high-frequency microsatellite instability cancers. Clin Cancer Res 12:454–459

    Article  CAS  PubMed  Google Scholar 

  30. Beck J, Urnovitz HB, Mitchell WM, Schütz E (2010) Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol Cancer Res 8:335–342. doi:10.1158/1541-7786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present Article was extracted from the thesis written by Marjan Rismanchi and financially supported by Shiraz University of Medical Sciences Grant No. 90-5532.

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mokarram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokarram, P., Rismanchi, M., Alizadeh Naeeni, M. et al. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography. Mol Biol Rep 41, 2835–2844 (2014). https://doi.org/10.1007/s11033-014-3138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3138-1

Keywords

Navigation