Skip to main content
Log in

Overproduction of mouse estrogen receptor alpha-ligand binding domain decreases bacterial growth

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Escherichia coli (E. coli) is the most widely used prokaryotic host system for the synthesis of recombinant proteins. The overproduction of recombinant proteins is sometimes lethal to the host cells. In the present study, we expressed the ligand binding domain (LBD) of mouse estrogen receptor alpha (mouse ERα) using an expression vector (pIVEX) in E. coli BL21(DE3) and examined the effect of production of this protein on bacterial growth. The expressed protein was immunologically detected as a 30 kD histidine-tagged protein in the soluble part of the bacterial lysate. The overproduction of mouse ERα-LBD, as reflected by total protein content and expression pattern, resulted in the decrease of bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson NL, Matheson AD, Steiner S (2000) Proteomics: applications in basic and applied biology. Curr Opin Biotechnol 11:408–412

    Article  PubMed  CAS  Google Scholar 

  2. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  PubMed  CAS  Google Scholar 

  3. Harcum SW, Ramirez DM, Bentley WE (1992) Optimal nutrient feed policies for heterologous protein production. Appl Biochem Biotechnol 34–35:161–173

    Article  Google Scholar 

  4. Nordberg KE, Holst O, Tocaj A (1999) Efficient production of thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures. J Biosci Bioeng 87:598–606

    Article  Google Scholar 

  5. Anderson L, Yang S, Neubauer P, Enfors SO (1996) Impact of plasmid presence and induction on cellular response in fed batch cultures of Escherichia coli. J Biotechnol 46:255–263

    Article  Google Scholar 

  6. Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology 10:1550–1556

    Article  PubMed  CAS  Google Scholar 

  7. Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81:753–767

    Article  PubMed  CAS  Google Scholar 

  8. Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    PubMed  CAS  Google Scholar 

  9. Rinas U (1996) Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli. Biotechnol Prog 12:196–200

    Article  PubMed  CAS  Google Scholar 

  10. Bentley WE, Mirjalili N, Anderson DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  PubMed  CAS  Google Scholar 

  11. Georgiou G, Shuler M, Wilson D (1988) Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction in Escherichia coli. Biotechnol Bioeng 32:741–748

    Article  PubMed  CAS  Google Scholar 

  12. Choia JH, Keumb KC, Leea SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61:876–885

    Article  CAS  Google Scholar 

  13. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  14. Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli Science 262:1744–1747

    Article  PubMed  CAS  Google Scholar 

  15. Olins PO, Rangwala SH (1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J Biol Chem 264:16973–16976

    PubMed  CAS  Google Scholar 

  16. Graentzdoerffer A, Watzele M, Buchberger B, Wizemann S, Metzler T, Mutter W, Nemetz C (2002) Optimization of the translational initiation region of prokariotic expression vectors: high yield in vitro protein expression and mRNA folding. In: Spirin AS (ed) Cell-free translation systems. Springer, Berlin, pp 211–217

    Google Scholar 

  17. Kumar V, Green S, Stack G, Berry M, Jin J-R, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51:941–951

    Article  PubMed  CAS  Google Scholar 

  18. Hanahan D. 1983. Studies on transformation of Escherichia coli with Plasmids. J Mol Biol 166(4):557–580

    Article  PubMed  CAS  Google Scholar 

  19. Padron RIV, Silva G, Agureo G, Phqam SM, Soberon M, Bravo A, Aitouche A (2004) Cryptic endotoxic nature of Bacillus thuringiensis Cry1Ab insecticidal crystal protein. FEBS Lett 570:30–36

    Article  CAS  Google Scholar 

  20. Seignovert LD, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37:203–206

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  23. O′Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins.J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  24. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  25. Ehrenber M, Kurland CG (1984) Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17:45–82

    Article  Google Scholar 

  26. Birnbaum S, Bailey JE, (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37:736–745

    Article  PubMed  CAS  Google Scholar 

  27. Gausing K (1977) Regulation of ribosome production in Escherechia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J Mol Biol 115:335–345

    Article  PubMed  CAS  Google Scholar 

  28. Shen V, Bremer H (1977) Chloramphenicol-induced changes in the synthesis of ribosomal, transfer, and messenger ribonucleic acids in Escherichia coli J Bacteriol 130:1098–1108

    PubMed  CAS  Google Scholar 

  29. Pedersen S, Bloch PL, Keeth S, Neidhart FC (1978) Pattern of protein synthesis in E. coli: a catalogue of the amount of 140 individual protein at different growth rates. Cell 14:179–190

    Article  PubMed  CAS  Google Scholar 

  30. Gallant JA (1979) Stringent control in E. coli. Annu Rev Genet 13:393–415

    Article  PubMed  CAS  Google Scholar 

  31. Dai K, Lutkenhaus J (1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174:6145–6395

    PubMed  CAS  Google Scholar 

  32. Jeong KJ, Lee SY (2003) Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl Environ Microbiol 69(2):1295–1298

    Article  PubMed  CAS  Google Scholar 

  33. Krzysztof P, Holzer, Hammes GG (1989) Cloning and expression of the yeast plasma membrane ATPase in Escherichia coli. J Biol Chem 264:14389–14395

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Vincent Giguere for providing the plasmid pCMX-mouse ERα cDNA and Dr. W. Nickle for kind gift of expression vector pIVEX. Swati Ghosh is a recipient of Senior Research Fellowship from the University Grants Commission, India. This work was supported by grants from the Department of Biotechnology (BT/PR3593/Med/14/468/2003), Government of India to M.K.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Kumar Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Thakur, M.K. Overproduction of mouse estrogen receptor alpha-ligand binding domain decreases bacterial growth. Mol Biol Rep 35, 589–594 (2008). https://doi.org/10.1007/s11033-007-9128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9128-9

Keywords

Navigation