Skip to main content
Log in

High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573

  • Published:
Molecular Breeding Aims and scope Submit manuscript

An Erratum to this article was published on 04 April 2015

Abstract

Managing wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is imperative for the preservation of global food security. The most effective strategy is pyramiding several resistance genes into adapted wheat cultivars. A search for new resistance sources to Pgt race TTKSK resistance identified a spring wheat landrace, accession PI 626573, as a potentially novel source of resistance. A cross was made between LMPG-6, a susceptible spring wheat line, and PI 626573 and used to develop a recombinant inbred population to map the resistance. Bulk segregant analysis (BSA) of LMPG-6/PI 626573 F2 progeny determined resistance was conferred by a single dominant gene given the provisional designation SrWLR. The BSA identified nine microsatellite (SSR) markers on the long arm of chromosome 2B associated with the resistant phenotype. Fifteen polymorphic SSRs, including the nine identified in the BSA, were used to produce a linkage map of chromosome 2B, positioning SrWLR in an 8.8 cM region between the SSRs GWM47 and WMC332. This region has been reported to contain the wheat stem rust resistance genes Sr9 and SrWeb, the latter conferring resistance to Pgt race TTKSK. The 9,000 marker Illumina Infinium iSelect SNP assay was used to further saturate the SrWLR region. The cosegregating SNP markers IWA6121, IWA6122, IWA7620, IWA8295, and IWA8362 further delimited the SrWLR region distally to a 1.9 cM region. The present study demonstrates the iSelect assay to be an efficient tool to delimit the region of a mapping population and establish syntenic relationships between closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo M, Newcomb M, Rouse M, Bockelman HE, Goates BJ, Jackson EW, Jin Y, Brown-Guedira G, Kilian A, Njau P, Singh D, Wanyera R, Bonman JM (2011) Looking for a needle in a haystack: screening of the international stem rust nursery in Kenya for new sources of resistance in spring wheat expo landraces. In: Proceedings of the Borlaug Global Rust Initiative 2011 Technical Workshop, St. Paul, Minnesota, pp 140–143

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alnemer LM, Seetan RI, Bassi FM, Chitraranjan C, Helsene A, Loree P, Goshn SB, Gu YQ, Luo M, Iqbal J, Lazo GR, Denton AM, Kianian SF (2013) Wheat Zapper: a flexible online tool for colinearity studies in grass genomes. Funct Integr Genomics 13:11–17

    Article  CAS  PubMed  Google Scholar 

  • Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella A (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47:1955–1963

    Article  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson J, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P, Dubcovsky J, Morell M, Sorrells M, Hayden M, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landrace and cultivars. PNAS 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661

    Article  CAS  Google Scholar 

  • Dubcovsky J, Saintenac C, Zhang W, Li C, Cantu D, Akunova A, Liang H, Rouse M, Akunov E (2012) New approaches to rust resistance in wheat. In: Book of abstracts for Plant and Animal Genome XX Conference, San Diego, CA 159

  • Endelman JB (2011) New algorithm improves fine structure of the barley consensus SNP map. BMC Genom 12:407

    Article  CAS  Google Scholar 

  • Fu B, Chen Y, Li N, Ma H, Kong Z, Zhang L, Jia H, Ma Z (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet 126:913–921

    Article  CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, Del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Hale IL, Mamuya I, Singh D (2013) Sr31-Virulent races (TTKSK, TTKST, and TTTSK) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici are present in Tanzania. Plant Dis 97:557

    Article  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69

    Article  PubMed  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott D (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149

    Article  PubMed  Google Scholar 

  • Jin Y (2005) Races of Puccinia graminis Identified in the United States during 2003. Plant Dis 89:1125–1127

    Article  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKSK of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Knott DR (1990) Near-isogenic lines of wheat carrying genes for stem rust resistance. Crop Sci 30:901–905

    Article  Google Scholar 

  • Kolmer JA (2001) Early research on the genetics of Puccinia graminis and stem rust resistance in wheat in Canada and the United States. In: Peterson PD (ed) Stem rust of wheat: from ancient enemy to modern foe. American Phytopathological Society, St. Paul, MN, pp 51–82

    Google Scholar 

  • Kolmer JA, Jin Y, Long DL (2007) Wheat leaf and stem rust in the United States. Aust J Agric Res 58:631–638

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Path 6:99–111

    Article  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microlinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne, Australia

    Book  Google Scholar 

  • Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317

    Article  Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates B, Jackson EW, Jin Y, Njau PN, Rouse MN, Singh D, Wanyera R, Bonman M (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97:882–890

    Article  Google Scholar 

  • Periyannan S, Moore J, Bariana H, Deal KR, Wang X, Luo M, Huang L, Ayliffe M, Bansal U, Kong X, Dodds P, Dvorak J, Lagudah E (2013a) Cloning of a broad spectrum stem rust resistance gene in wheat. In: Book of abstracts for plant and animal genome XXI conference, San Diego, CA, p 215

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013b) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect 26c:496–500

    Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  CAS  PubMed  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to and aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Röder MS, Korzun C, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Roelfs A (1982) Effects of barberry eradication on stem rust in the United States. Plant Dis 66:177–181

    Article  Google Scholar 

  • Roelfs AP (1985) Wheat and Rye stem rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts vol II: diseases, distribution, epidemiology and control. Academic Press, Florida, pp 3–27

    Chapter  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico City, Mexico

    Google Scholar 

  • Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95:762–766

    Article  Google Scholar 

  • Rouse MN, Nava IC, Chao S, Anderson JA, Jin Y (2012) Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125:877–885

    Article  PubMed  Google Scholar 

  • Rowell JB (1984) Controlled infection by Puccinia graminis f. sp. tritici under artificial conditions. In: Bushnell WR, Roelfs AP (eds) The cereal rusts, origins, specificity, structure, and physiology, vol 1. Academic Press, Florida, USA, pp 292–332

    Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse RN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson D, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel S, Ward RW (2008) Will stem rust destroy the world’s wheat crop. Adv Agron 98:272–309

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Department of Agriculture Agricultural Research Service E-617

  • Steemers FJ, Gunderson KL (2005) Company profile: Illumina, Inc. Pharmacogenomics 6:777–782

    Article  PubMed  Google Scholar 

  • Stewart N, Via L (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–749

    CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2007) Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci 47:2013–2020

    Article  CAS  Google Scholar 

  • Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3:373–384

    Article  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinf 8:381–394

    Article  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population Structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet. doi:10.1007/s00122-013-2065-1

    Google Scholar 

  • Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matt Breiland, Amanda Swank, Mary Osenga, Dawn Feltus, Richard Sonju, and Taylor Morgan for their technical support. This project was funded through the North Dakota Wheat Commission and USDA-ARS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricelis Acevedo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2014_81_MOESM1_ESM.xlsx

Supplementary material 1 Table S1: An online supplementary file containing the Infinium iSelect SNP map of all 25 linkage groups (XLSX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurn, J.D., Newcomb, M., Rouse, M.N. et al. High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573. Mol Breeding 34, 871–881 (2014). https://doi.org/10.1007/s11032-014-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0081-8

Keywords

Navigation